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Abstract
The development of reliable additive manufacturing (AM) technologies to process metallic materials, e.g. selective laser 
melting (SLM), has allowed their adoption for manufacturing final components. To date, ensuring part quality and process 
control for low-volume AM productions is still critical because traditional statistical techniques are often not suitable. To 
this aim, extensive research has been carried out on the optimisation of material properties of SLM parts to prevent defects 
and guarantee part quality. Amongst all material properties, defects in surface hardness are of particular concern as they 
may result in an inadequate tribological and wear resistance behaviour. Despite this general interest, a major void still con-
cerns the quantification of their extent in terms of probability of defects occurring during the process, although it is opti-
mised. Considering these issues, this paper proposes a novel approach to quantify the probability of occurrence of defects 
in hardness-optimised parts by SLM. First, three process variables, i.e. laser power, scan speed and hatching distance, are 
studied considering their effect on hardness. Design of Experiments and Response Surface Methodology are exploited to 
achieve hardness optimisation by controlling process variables. Then, hardness defect probability is estimated by composing 
the uncertainty affecting both process variables and their relationship with the hardness. The overall procedure is applied 
to AlSi10Mg alloy, which is relevant for both aerospace and automotive applications. The approach this study proposes 
may be of assistance to inspection designers to effectively and efficiently set up quality inspections in early design phases 
of inspection planning.
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List of Symbols
Xi	� Input variable (i = 1,…,m)
Yj	� Output variable (j = 1,…,n)
pYj	� Probability of occurrence of the defective-output 

variable Yj
USLj	� Upper specification limit of output variable Yj
LSLj	� Lower specification limit of output variable Yj
EA	� Energy adsorption
ψ	� Energy density
HB	� Brinell hardness in the scale HBW 2.5/62.5
hd	� In-skin hatching distance
P	� In-skin laser power
t	� Layer thickness
v	� In-skin scan speed

1  Introduction

Additive manufacturing (AM) is one of the most recent tech-
nologies that have been rapidly developing and integrating 
into manufacturing and our day-to-day lives. AM is defined 
in ISO/ASTM 52900:2015 as “the process of joining mate-
rials to make parts from 3D model data, usually layer upon 
layer, as opposed to subtractive manufacturing technologies 
and formative manufacturing methodologies” [1]. Synonyms 
found in the literature include additive processes, additive 
techniques, additive layer manufacturing, layered manufac-
turing, and solid freeform fabrication.

Parts produced by additive technologies are character-
ised by innovative shapes, complex features and lightweight 
structures, hard or even impossible to produce with conven-
tional processes [2]. Parts production is carried out directly 
from computer-aided design (CAD) models without any 
sort of tools or fixtures and with negligible production of 
waste material [3, 4]. The development of AM technologies 
capable of processing metallic materials in the late 1990s 
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played a transformational role regarding their application 
domains. In fact, AM parts, after years of being limited to 
producing polymeric visualization models and prototypes, 
are now used as end parts for several industrial sectors such 
as automotive, motor racing, medical, aerospace, defence [5, 
6]. Therefore, ensuring the quality of additively produced 
parts is a fundamental need to meet the stringent require-
ments and certification constraints imposed by the sectors.

One of the most widespread metal AM process is selec-
tive laser melting (SLM) or direct metal laser sintering 
(DMLS) [7, 8]. In this process, a high-density object is built 
up layer by layer through the consolidation of metal powder 
particles with a focused laser beam that selectively scans 
the surface of the powder bed [3, 9–13]. Metal powders, 
also reactive materials like titanium and aluminium, e.g. 
Ti6Al4V or AlSi10Mg alloys, are melted without the aid of 
a binder, as in the case for indirect laser sintering [14–18]. 
Recently, researchers have shown an increasing interest in 
the potential of this process that enables to build in one step 
full dense metallic parts with complex geometries which 
are used as final parts or functional prototypes [4, 19, 20]. 
Indeed, by choosing the proper input conditions, components 
by SLM can achieve equivalent or very similar mechanical 
properties to those of parts produced by traditional manufac-
turing techniques [3, 21]. However, despite the versatility of 
the materials and shapes that can be achieved, SLM features 
some criticalities that require careful control of the process 
and the process variables used, which must be optimised to 
prevent defects from being generated.

Defects of metal components by SLM may be classi-
fied in the following categories: residual stresses; porosity; 
cracking and delamination; balling; geometric defects and 
dimensional accuracy; surface defects, and microstructural 
inhomogeneity and impurities [2]. The presence of such 
defects can severely affect the final quality and mechanical 
properties of SLM samples. However, due to the complex 
nature of the process and the differences between the prop-
erties of materials used, it is challenging to adopt standard 
methods to improve and optimise mechanical properties 
[22–24]. According to literature, controlling and changing 
properly the input variables may allow to obtain the desir-
able mechanical properties of the parts and conversely to 
limit the probability of defects generation. Specifically, the 
influence of the process variables on surface mechanical 
properties, and the subsequent identification of the values 
that optimise such properties, may be investigated through 
the use of experimental planning, e.g., factorial designs, 
and relevant statistical analysis using the analysis of vari-
ance (ANOVA) [25–28]. So far, despite the large amount of 
published studies focusing on the optimisation of the AM 
process, no specific attention has been paid to the remark-
able issue of identifying the probability of defects genera-
tion occurring when the process is optimised. Indeed, even 

under optimal working conditions, namely when each pro-
cess parameter is set at its optimal value, the probability 
of defects occurrence is never negligible because of the 
uncertainty affecting the overall manufacturing process. In 
this view, the objective of the study is to contribute to this 
growing area of research by proposing a methodology for 
the estimation of the probability of occurrence of defects 
related to a specific surface mechanical property, i.e. sur-
face hardness. In particular, such probability is estimated for 
hardness-optimised AlSi10Mg samples produced by SLM 
process. First, the significance and the optimal values of 
process variables affecting hardness values are determined 
through statistically designed experiments. The Response 
Surface Methodology (RSM) is used to analyse the results 
[29]. Then, a mathematical model relating the significant 
process variables to the output response, i.e. hardness value, 
is developed and, as a result, optimised. Finally, the prob-
ability of the occurrence of hardness defect is estimated by 
exploiting and composing the uncertainty affecting both the 
obtained mathematical model and the input variables.

By applying methodologies already exploited in litera-
ture, this work moves forward to defining a method to esti-
mate the probability of occurrence of defects, which still 
lacks in literature. This method represents a powerful tool 
for inspection designers to effectively and efficiently set up 
quality inspections of low-volume AM productions in early 
design phases of inspection planning [30, 31].

The rest of the paper is structured as follows: Sect. 2 pre-
sents the adopted defect prediction models, Sect. 3 describes 
the considered material and manufacturing process, Sect. 4 
defines the analysis methodology, Sect. 5 details the experi-
mental set-up, Sect. 6 discusses results, and Sect. 7 finally 
draws conclusions.

2 � Defect Prediction Model

In order to evaluate the probability of occurrence of defects 
in the final part, the AM manufacturing process, in optimal 
working conditions, should be modelled as represented in 
Fig. 1. Specifically, m process variables, also called input 
variables, may affect the final quality of the AM product. In 
order to evaluate product quality, n output variables are 
measured on the AM part, using the most appropriate 
inspection method to detect the defect, e.g. dimensional veri-
fications, mechanical tests, or visual checks [32–34]. In this 
situation, each input variable may potentially influence each 
output variable at different intensity levels. As represented 
in Fig. 1, each input variable is denoted as Xi, (i = 1,…,m) 
and each output variable is indicated as Yj (j = 1,…,n). Fur-
thermore, for each output variable Yj, a probability of occur-
rence of a defect, called pYj , may be defined. It is worth 
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remarking that the manufacturing process considered is in 
optimal working conditions, meaning that each input vari-
able is set at its optimum value. Under such conditions, each 
pYj should be zero; however, in realistic cases, this almost 
never happens because of uncertainty. Consequently, it is of 
the utmost importance to estimate such probabilities of 
occurrence of defects in order to effectively and efficiently 
plan quality inspections on the final product [35].

The probabilities of occurrence of defects, pYj , are closely 
related to the intrinsic characteristics of the process. Accord-
ingly, they can be evaluated by using empirical methods, e.g. 
historical data, previous experience on similar processes, 
knowledge of the process, or by implementing probabilistic 
models [36–38]. In the case of AM productions, which are 
small-sized lots or even unique parts, the historical data are 
often not available, requiring the formulation of a probabil-
istic model that exploits the knowledge of the production 
process.

The model developed in this work relies on the assumption 
that a relationship between input and output variables exists. 
Consequently, if the adopted inspection procedure detects a 
defect related to the output variable, this can be caused by 
some input variables or by their interaction. The probabili-
ties of occurrence of defective-output variables can, there-
fore, be obtained based on the mathematical function that 
relates input variables with output variables [39]. Moreover, 
the proposed methodology requires the knowledge of the val-
ues of input variables that result in the best values of output 
variables. Thus, the AM process must be optimised, and the 
input variables must be set to their optimal value. Finally, the 
specification limits of the output variables (upper specifica-
tion limit, USLj, and lower specification limit, LSLj) are nec-
essary to determine whether the products meet the specifica-
tions imposed by company regulations and/or standards. Input 
variables can be discrete or continuous variables. Since most 

of the process variables set on AM machines are continuous 
variables, only these are covered in detail in this study.

The methodology adopted to estimate the probability of 
occurrence of defective-output variables relies on the composi-
tion of the uncertainty coming from the mathematical function 
that relates the input and output variables, and from the uncer-
tainty deriving from maintaining the input variables at their 
optimal value [35]. Specifically, since in practical applications, 
the mathematical function is not exactly defined, it implies that 
its coefficients are affected by uncertainty. Also, the optimal 
values of the input variables are often not exact because of the 
uncertainty of the measurement device. Accordingly, a vari-
ability range must be associated with them. The probability 
distribution associated with input variables depends on their 
characteristics, e.g. a uniform distribution should be consid-
ered, if the values are all equiprobable in the interval. The 
variance of the probability distribution of each output variable 
may, therefore, be estimated by composing the uncertainties 
associated to both the input variables and the mathematical 
function, through the law of composition of variances for lin-
ear or linearizable model [40]. In formulas, defined the vector 
of the m input variables as X =

[

x1,… , xm
]T , the uncertainty 

of each input variable contributes to the variance of the related 
Yj output variable, together with the contribution of the math-
ematical function coefficients, A =

[

a0, a1,… , am
]T
, as shown 

in Eq. (1) [35]:

where K is the vector of size 2m + 1 of the input variables 
and the coefficients of the mathematical function, defined as 
K = [X,A]T , cov(K) is the variance–covariance matrix [41] 
and 

[

�Yj

�K

]

 is the vector of the partial derivatives of Yj with 
respect to each component of K.

Since the distribution of each output variable Yj originates 
by many different random contributions, it can be approxi-
mated to a normal distribution according to the central limit 
theorem [42]. Thus, each probability pYj , which represents the 
probability that Yj falls outside the specification limits (LSLj 
and USLj), can be estimated by computing the area of the nor-
mal distribution outside the two specification limits, according 
to Eq. (2):

(1)VAR
(

Yj
)

≈

[

�Yj

�K

]T

⋅ cov(K) ⋅

[

�Yj

�K

]

(j = 1,… , n)

(2)p
Yj
= 1 − P

(

LSLj ≤ Yj ≤ USLj
)

X1 X2 Xi Xm

Input variable (Xi)

AM 
product

Y1 Y2 Yi Yn

Output variable (Yj)

Fig. 1   Schematic of AM process with m input variables and n output 
variables measured on the AM product, with relative probabilities of 
occurrence of defects 

(

pYj

)
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3 � Material and Process

This section describes the material and the additive man-
ufacturing process considered in the present work, with 
highlights on their industrial application and focusing on 
the process variables known to influence material properties.

3.1 � AlSi10Mg Alloy

Aluminum–Silicon alloys are extremely attractive cast alu-
minum alloys thanks to their high fluidity, weldability, cor-
rosion resistance and low coefficient of thermal expansion. 
Moreover, the presence of magnesium as alloying element 
promotes the formation of precipitates of Mg2Si. These 
strengthen the matrix and enable effective hardening to be 
achieved through heat treatments or rapid solidification tech-
niques, but limit the feasible design [11, 19, 23, 43–45]. 
Therefore, aluminum alloys are of great interest for auto-
motive and aerospace industries due to their combination 
of high strengths, low densities and thermal capacity [44], 
finding application in heat exchangers, heat sinks, turbine 
blades, carters and cylinder blocks [46, 47]. Furthermore, 
near-eutectic composition, thanks to the small solidifica-
tion range, ease their processing by laser [43]. Therefore, 
AlSi10Mg is an alloy which is particularly suitable and 
interesting for SLM processing, which, ultimately, enables 
freedom design for this high-performance material.

3.2 � Selective Laser Melting

SLM was born, as patent deposition, in 1987 and has been 
developed since the early 2000s, mostly from the point of 
view of the capability of processing mono-component mate-
rial, which eventually enabled for production application.

The part building process takes place inside an enclosed 
chamber filled with nitrogen gas to minimise oxidation 
and degradation of the powdered material, or inert gas, 
e.g. Argon or Helium, to avoid material to react with the 
environment.

An infra-red heater maintains the powder in the build 
platform at an elevated temperature, just below its the 
melting point or its glass transition temperature, to reduce 
the laser power needed to locally melt the powder and the 
heat exchange which is a source of warping. As soon as 
a counter-rotating roller spreads a layer of powder on the 
building platform, which must be ground and polished, a 
focused laser beam is directed onto the powder bed and is 
moved using galvanometers. In such a way, the laser beam 
thermally fuses the material to form the slice cross-section. 
Surrounding powder remains loose and serves as support 
for subsequent layers, thus eliminating the need for the 

secondary supports which are necessary for photopolymer 
vat processes. After completing a layer, the build platform 
is lowered by one-layer thickness, t, typically (20–50) µm 
for metal, and a new layer of powder is laid, and the beam 
scans the subsequent cross-section. Schematic of the process 
system’s main component is shown in Fig. 2 [48].

In the present work, the EOS M 290 SLM machine is 
considered. This platform is a high productivity system of 
limited dimensions that enables to build components within 
a volume of (250 × 250 × 320) mm. It features a Yb-fibre 
laser with a nominal power of 400 W and a focus diameter 
of 100 µm, with a scanning control based on f −  lenses with 
a focal length of 410 mm, that operates in an Argon shielded 
environment.

In order to achieve total quality management, the whole 
influencing factors in the AM process chain must be catered 
for [49, 50], as shown in Fig. 3. Through the SLM process, 
five aspects have the most significant impact, these being 
Equipment, Material, Production, Batch and Part. However, 
only few can be actually controlled and, moreover, a thor-
ough understanding of their effect on the process is far from 
being achieved.

Literature [3, 23, 51–53] provides an overview of most 
relevant influencing factors along with systematic study, 
by means of ANOVA, DoE and RSM, of their effect on 
material characterisation, both from mechanical and topo-
graphical perspectives. Amongst those, process variables 
represent a subset the component manufacturer can act on 
to achieve control and optimisation of the process. Accord-
ing to Gibson et al. [48], notwithstanding their effects are 
intertwined, process variables can be divided into four cat-
egories: (1) laser-related variables (e.g. laser power, spot 
size), (2) scan-related variables (scan speed, scan spacing 
or hatching distance, and scan pattern), (3) powder-related 
variables (e.g. particle shape, size and distribution, powder 

Fig. 2   Schematic of SLM. Adapted from Gibson et al. [48]
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bed density, layer thickness, material properties), and (4) 
temperature-related variables (e.g. powder bed tempera-
ture, powder feeder temperature, temperature uniformity) 
[43, 54].

Along the building direction, different boundary condi-
tions for heat exchange between the layer and the environ-
ment are met during the build. In fact, the bottom region is 
in contact with the building platform, below it, and laser 
exposed areas, above it; the top region has exposed areas 
below and the region in between them contacts exposed 
areas above and below itself [55–57]. These three regions 
can be respectively named as the down-skin, the up-skin and 
the core or in-skin [3, 11, 48, 58–60], as shown in Fig. 4. In 
order to optimise the process, it is standard practice to set up 
different process parameter for each of these three regions, 
considering that the down-skin consists of two layers and the 
up-skin of three [11, 58]. Literature [3, 11, 43, 60, 61] has 
shown that this region-wise differentiated parameter set-up 
can both relieve the effect of boundary condition for heat 
exchange and achieve control of material properties. In fact, 
according to Fig. 4, up- and down-skin variables are related 

to surface properties, whilst in-skin variables to the core, 
bulk average properties of the component.

3.3 � Influence of Process Variables on Material 
Defects

Due to its application field, see Sect. 3.1, previous research 
has investigated the effect of main process variables on 
mechanical properties of SLM parts, mostly for AlSi10Mg 
alloy. For example, Manfredi et  al. reported that the 
DMLS-fabricated AlSi10Mg alloy exhibited significantly 
higher yield stress compared to its as-cast counterpart [11]. 
Krishnan et al. found that among the process variables, hatch 
spacing had the most significant effect on the part mechani-
cal properties, being capable of controlling the surface finish 
and the surface hardness, hence the wear and tribological 
behaviour of the component [58]. In another study, Yan et al. 
investigated the effect of volume fraction on the compres-
sive strength and hardness of the DMLS-fabricated lattice 
structures [62]. They also achieved near fully dense struts 
of AlSi10Mg lattice structures due to the overlap of melt 
pools. Ghasri-Khouzani et al. tried to distinguish the differ-
ence in microstructure and mechanical properties of different 
AM part planes [44]. Kempen et al. showed that AlSi10Mg 
parts produced by SLM have mechanical properties higher 
or at least comparable to the cast material because of the 
very fine microstructure [63], promoted by the layer remelt-
ing. A large amount of studies in literature reveals that con-
trolling and properly changing the input variables allows 
obtaining the desirable mechanical properties of the parts 
and conversely to limit the probability of defects generation. 

Fig. 3   Ishikawa diagram: influencing factors within AM process chain for SLM. Adapted from Schmidt et al. [19]
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et al. [59]
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In particular, the present paper focuses on the effect of laser 
power, P, the hatching distance, hd, and the scan speed, v, 
of the in-skin.

Due to its working principle, SLM can be compared for 
issues (warping, thermal gradient, residual stresses) to cast-
ing, even though with quite the opposite microstructural 
remelts and definitively without casting design constraints 
[64]. Laser source must be capable of generating a laser 
with a power sufficient to melt the layer and part of the layer 
underneath, in order to guarantee adequate adhesion: the 
greater the laser power, the larger the remelt zone. Because 
of the cyclic melting of layers, a fine microstructure results 
which sometimes requires devoted heat treatments to be per-
formed. Moreover, since the laser power controls the sever-
ity of the temperature gradient, it has, therefore, a significant 
effect on the surface properties. Indeed, thermal gradient and 
resulting shrinkage may generate residual stresses leading to 
an increase of the probability of warping and cracks onset, 
which, though, can be relieved by slight oversizing the part 
[65, 66] and by devoted scanning strategies. The laser locally 
melts the cross-section with a pattern, i.e. scanning strategy, 
aimed at minimising the thermal gradient and the residual 
stresses in the component, e.g. by means of the offset island 
strategy [50, 60]; laser scans at a certain speed, v, which is 
critical to be appropriately set as it determines the amount of 
energy introduced during melting, hence influencing mate-
rial properties and structure. Indeed, as described by Childs 
et al. [67], excessively high speed may hinder from melting 
to occur or yields to balling whereas low speed entails high 
energy adsorption, EA, defined according to Eq. (3):

Furthermore, complex interactions between P, v and 
scanning strategy increase the complexity of the setup of 
this parameter [67]. To fill the cross-section, laser scans lines 
according to the scanning strategy and the distance between 
the centre of two adjacent lines is the hatching distance or 
scan spacing, hd, which is, therefore, a measure of the over-
lap of lines. In particular, multiple overlapping lines entails 
several passes of the laser on the same point, thus enabling 
higher v to be adopted [48, 67]. Moreover, if the distance 
between two adjacent scan lines is larger than the diameter 
of the laser beam, the metal powders do not bind together 
well. Consequently, high hatch density entails greater energy 
adsorption and yields to higher mechanical strength [3], 
hardness and, in general, improved tribological behaviour, 
thus decreasing the probability of defects generation.

Adhesion between layers is core to be achieved to avoid 
delamination and high part density and hardness. In par-
ticular, devoted scanning strategies have been developed to 
improve bonding of the layers, e.g. the alternate xy and the 

(3)EA =
P

hd ⋅ v

[

J

mm2

]

rotated hatch pattern [50, 59]. Furthermore, layer thickness 
t has been demonstrated to affect adhesion, depending on 
energy absorption [50].

Therefore, considering the variables accounted by the 
present work, the laser heat input is using the energy density 
function, ψ, which is described by Eq. (4):

More in general, the laser heat input is strictly related to 
the degree of consolidation of the powder particles, and it 
may increase the probability of defects generation, if not 
appropriately set, by creating turbulence in the melt pool 
that can form a keyhole-like defect in the extreme condi-
tions [50]. Consequently, it is often adopted in literature as a 
reference parameter for the setup of ANOVA, DoE and RSM 
analysis of influencing factors on material properties [43].

Amongst the several mechanical properties, this work 
focuses on the hardness. This measurement evaluates a 
characteristic that allows inferring other properties of the 
material, e.g. plasticity. However, as far as the influence of 
process variables is concerned, here is relevant to recall the 
works of Li and Gu [68], Song et al. [69], Lam et al. [70], 
Li et al. [71] and Ghasri-Khouzani et al. [44]. They demon-
strated that the local melting and high cooling rate typical of 
SLM process yield to a finer microstructure. Thus, materials 
by SLM are characterised by greater hardness, and hence 
higher strength, with respect to cast or wrought parts. These 
properties are further enhanced by the alloying elements and 
the interactions of dislocation for the AlSi10Mg. SLM intro-
duces anisotropy in the material due to the layer-by-layer 
building strategy; however, it has been demonstrated that at 
least at macro and micro scales it does not introduces signifi-
cant differences in the material mechanical behaviour [44].

4 � Analysis Methodology

This section presents the methodologies adopted for arrang-
ing the tests and analysing experimental data to optimise 
the SLM process. Design of Experiment (DoE) is an effec-
tive statistical approach for optimising the process when a 
combination of different input variables and their interac-
tions affect selected responses [72]. Then, Response Surface 
Methodology (RSM) uses experimental designs to fit the 
model by the least-squares technique. In fact, RSM is a col-
lection of mathematical and statistical techniques aimed for 
the empirical exploration of the relationship between con-
tinuous response(s) and a set of input factors [29]. In the 
exploratory stages of model building, stepwise regression 
may be used to identify the best subset of predictors. It is 
an automatic technique implemented in several statistical 

(4)� =
P

hd ⋅ v ⋅ t

[

J

mm3

]
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software such as MINITAB®, which is used in this analysis. 
Stepwise regression both adds and removes predictors at 
each step, according to selected Alpha-to-Enter and Alpha-
to-Remove values [29]. The Analysis Of Variance (ANOVA) 
is used to estimate the statistical significance of variables’ 
effects with respect to the observed differences in response. 
Diagnostic checking test, e.g. coefficients of determination 
and residuals plots, are exploited to verify the underlying 
assumptions to perform the ANOVA and ultimately dem-
onstrate the model adequacy. Finally, the response surface 
plots can be employed to study the surfaces and locate the 
optimum. For this reason, the RSM is usually used to assess 
results and efficiency of operations [50].

5 � Experimental Setup

As mentioned in Sect. 3.3, and according to literature, in this 
case study, the input variables were laser power, scan speed 
and hatching distance of the in-skin. The three input, i.e. P, 
v and hd, if not adequately set, may determine the genera-
tion of several defects, e.g. warpage, cracking, unsatisfactory 
powder bonding and microstructure dimension. Hence, their 
set-up controls the quality outputs of the parts. The output 
variable measured on the samples was surface hardness. 
Samples geometry (see Fig. 5) was designed to perform, in 
forthcoming analyses, measurements of surface roughness, 
in addition to the hardness tests.

In order to obtain optimal process variables that result 
in the best values of hardness, an experimental plan was 
designed. Specifically, a 33 full factorial design was real-
ised in order to investigate possible quadratic effects of input 
variables. The three input variables related to the in-skin, 
laser power (P), scan speed (v) and hatching distance (hd), 
were kept at three levels (see Table 1). For each of the 27 
parts, the contour of the layer structure was exposed with the 
same value of speed (1000 mm/s) and laser power (355 W) 
of the up-skin. In addition, a strategy of post-contour was 
realised (with a speed of 900 mm/s and a power of 80 W). 

The choice of the levels of the process variables set in the 
experimental plan allowed to get a wide range of energy 
density function, ψ, see Eq. (4). Specifically, ψ varied from 
35.09 to 124.58 J/mm3, as it will be shown in Sect. 6.1. 
The experiments were not randomised because of the high 
repeatability of the machine allowed building the samples in 
a single job, by varying process variables for each sample. 
This approach, as a first approximation, is the one adopted 
in the computer experiment field.

After the production, the 27 specimens for hardness 
measurements were polished, see Fig. 6a. Then, the Brinell 
hardness test was performed according to the industrial 
standard ISO 6506-1:2014 [73]. The test was carried out 
using a sphere with a diameter of 2.5 mm and applying a 
force of 62.5 kgf, thus evaluating Brinell hardness in the 
scale HBW 2.5/62.5 to provide a reference to powder sup-
plier specification. The average value of three measurements 
for each sample was examined, to cater for the measurement 
procedure variability. Figure 6b shows the Brinell hardness 
test performed on the specimens.

6 � Results and Discussion

After collecting the data obtained from the Brinell hard-
ness measurements on the 27 samples of the experimen-
tal plan, the statistical analysis was performed, using the 

Fig. 5   Samples geometry

Table 1   Process variables values used in the planned experimentation

Process variable Values

P (W) 340–355–370
v (mm/s) 900–1300–1700
hd (mm) 0.11–0.15–0.19

Fig. 6   a Samples polishing and b samples Brinell hardness test
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RSM. The average of the three hardness measurements 
carried out on the samples was examined, as shown in 
Table 2.

6.1 � ANOVA Results

The arrangement of the full factorial design, as shown 
in Table 2, allowed the identification of the appropriate 
empirical equation, i.e. a second-order polynomial mul-
tiple regression equation. The standard stepwise regres-
sion was adopted to obtain a model containing exclu-
sively significant factors. The values of Alpha-to-Enter 
and Alpha–to-Remove were set to 10% to allow entering 
terms close to the significance level of 5%. The software 
MINITAB® 17.1 was used to perform the analysis. The 
RSM provided the analysis of variance (ANOVA) (see 
Table 3), the coefficients of the regression models with 

their standard errors (see Table 4), and the regression 
equation shown in Eq. (5).

The predicted response, i.e. the Brinell hardness HB, was 
therefore related to the set of regression coefficients (β): the 
intercept (β0), linear (β1, β2, β3), interaction (β5) and quad-
ratic coefficient (β4). As mentioned in Sect. 5, in this analy-
sis, Brinell hardness is evaluated in the scale HBW 2.5/62.5; 
however, for simplicity of notation, the corresponding meas-
urement unit is only indicated by the symbol HB.

By performing a qualitative analysis on the main effect 
of the process variables and observing the main effect plot, 
shown in Fig. 7, it can be concluded that all three input 
variables have a main effect on hardness. In the main effect 
plot, the higher the slope of the line which connects the 
levels of the process variables, the greater the influence of 
each variable is. The main effect on the hardness seems to 
be due to the scan speed v: a speed of 900 mm/s produces 
a hardness of about 90 HB; conversely, using a speed of 
1700 mm/s the resulting hardness is about 120 HB. The 
second variable, which has the greatest effect on hardness, 
is the hatching distance hd, whilst the laser power P seems 
to have a weaker effect than the other process variables. It 
is worth noting that the trends are of direct proportionality 
for the scan speed and the hatching distance and inverse 
proportionality for the laser power: lower laser power yields 

(5)HB = �0 + �1 ⋅ P + �2 ⋅ v + �3 ⋅ hd + �4 ⋅ v
2 + �5 ⋅ v ⋅ hd

Table 2   Arrangement of the experimental design for the three inde-
pendent variables, together with corresponding energy densities and 
experimental values of Brinell hardness

Run P (W) V (mm/s) hd (mm) ψ (J/mm3) Hardness 
HB (HB)

1 340 900 0.11 114.48 85.7
2 340 900 0.15 83.95 90.3
3 340 900 0.19 66.28 103.7
4 340 1300 0.11 79.25 96.7
5 340 1300 0.15 58.12 115.0
6 340 1300 0.19 45.88 121.0
7 340 1700 0.11 60.61 120.3
8 340 1700 0.15 44.44 118.7
9 340 1700 0.19 35.09 119.7
10 355 900 0.11 119.53 76.0
11 355 900 0.15 87.65 87.7
12 355 900 0.19 69.20 99.7
13 355 1300 0.11 82.75 108.0
14 355 1300 0.15 60.68 116.3
15 355 1300 0.19 47.91 119.7
16 355 1700 0.11 63.28 114.7
17 355 1700 0.15 46.41 118.7
18 355 1700 0.19 36.64 115.3
19 370 900 0.11 124.58 78.7
20 370 900 0.15 91.36 87.3
21 370 900 0.19 72.12 84.7
22 370 1300 0.11 86.25 100.3
23 370 1300 0.15 63.25 110.3
24 370 1300 0.19 49.93 118.3
25 370 1700 0.11 65.95 120.3
26 370 1700 0.15 48.37 116.3
27 370 1700 0.19 38.18 116.3

Table 3   ANOVA for hardness HB (HB)

Source df Sum of squares F p-value (%)

P 1 81.64 3.93 6.1
v 1 3950.62 190.29 < 0.1
hd 1 529.93 25.53 < 0.1
v·v 1 458.40 22.08 < 0.1
v·hd 1 222.45 10.72 0.4
Residual error 21 435.98
Total 26 5679.02

Table 4   Estimates of parameters of the regression model (see Eq. 5) 
and their standard errors

Variable Parameter Estimate of parameter SE on 
estimate of 
parameter

constant β0 (HB) − 5.12 × 101 3.57 × 101

P β1 (HB/W) − 1.42 × 10−1 7.16 × 10−2

v β2 (HB/(mm/s)) 2.19 × 10−1 3.28 × 10−2

hd β3 (HB/mm) 4.85 × 102 1.10 × 102

v·v β4 (HB/(mm/s)2) − 5.46 × 10−5 1.16 × 10−5

v·hd β5 (HB/(mm2/s)) − 2.69 × 10−1 8.22 × 10−2
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better, i.e. greater, hardness. On the contrary, diminishing 
the scanning speed and the hatching distance, worse values 
of hardness are obtained. The analysis of variance confirms 
these results (see Table 3). Indeed, it emerges that v and hd 
are highly significant, i.e. their p-values are less than 0.1%, 
and P is significant at a 6% significance level.

With respect to the quadratic terms in Table 3, only the 
effect of the scan speed is found to be highly significant. The 
interactions between variables can be visualised with the 
interaction plot, shown in Fig. 7. Parallel lines in an interac-
tions plot indicate no interaction. The greater the departure 
of the lines from the parallel state, the higher the degree of 
interaction. The graph shows that it is possible to obtain high 
HB using high values of scan speed and high values of hatch-
ing distance and, there are strong interactions between these 
two variables. The ANOVA confirms that result, by showing 

that the interaction between v and hd is highly significant (p 
value of 0.4%). Furthermore, the RSM provided the esti-
mates of the regression model’s parameters, see Eq. (5), 
with their standard errors, which are reported in Table 4. 
The analysis of residuals, i.e. the differences between the 
observed and the corresponding fitted values, is shown in 
Fig. 8 and suggests that the model fits the data well. The 
normality of the residuals is confirmed graphically both by 
the normal probability plot (NPP), in which the points fol-
low approximately a straight line, and by the histogram (see 
Fig. 8). Furthermore, by performing the Anderson–Darling 
test, the null hypothesis that the residuals follow a normal 
distribution cannot be rejected at a significance level of 5% 
[41]. The plot of residuals versus fitted values shows a hori-
zontal band around the residual line (value 0) and no rec-
ognizable patterns are found. However, the residuals versus 

Fig. 7   Main effects plot and interaction plot for hardness HB (HB)

Fig. 8   Residual plots for hard-
ness HB (HB)
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order plot reveals that non-random error, especially of time-
related effects, may be present. The R2 value is a measure of 
goodness of fit of the model. It shows that the variation in 
the response explained by the model describing the relation-
ship between the process variables and the Brinell hardness 
is 92.3%. Even the predicted R2 value is very high, reaching 
85.9%, suggesting a great predictive capability of the model.

In Fig. 9, surface plots showing how the fitted response 
relates to the three pairs of independent variables are 
reported. A surface plot displays the three-dimensional 
relationship with the independent variables on the x- and 
y-axis, and the response (z) variable represented by a smooth 
surface. The graphs are generated by calculating fitted 
responses using the independent variables while holding the 
third control variable constant at the central value.

6.2 � Process Optimisation

In order to find the values of laser power, scan speed and 
hatching distance of the in-skin resulting in the best value of 
hardness, a response optimisation was performed. Specifically, 

the objective function was set to maximise the hardness. Pro-
cess variables setups and the respective value of energy density 
ψ, are summarised in Table 5, together with the predicted value 
of hardness and the related 95% confidence interval. In Fig. 10, 
the optimisation plot for HB is reported. Such a plot shows the 
effect of each factor on the response. The factors are reported 
in the columns and the response in the row. The vertical red 
lines on the graph represent the optimal factor settings, whose 
values are displayed in red at the top of each column. The hori-
zontal blue line and value represent the response for the opti-
mal factor levels. As far as P and hd values are concerned, they 

Fig. 9   Surface plot of hardness HB (HB) versus: a hatching distance 
hd (mm) and laser power P (W) (scan speed v was set to 1300 mm/s); 
b scan speed v (mm/s) and laser power P (W) (hatching distance hd 

was set to 0.15  mm); c versus hatching distance hd (mm) and scan 
speed v (mm/s) (laser power P was set to 355 W)

Table 5   Process setup (maximum HB)

Response optimisation and predicted value

Control factors Response predicted value

P (W) v (mm/s) hd (mm) ψ (J/mm3) Response 
value 
(HB)

Response 95% 
CI (HB)

340 1538.4 0.19 38.78 122.45 (118.08;126.83)
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are situated at the limits of the ranges selected for the planned 
experimentation. Specifically, P is located at the lower limit of 
the range and hd at the upper limit. Regarding v, the value that 
leads to the optimal hardness is placed at about three-quarters 
of the interval. This parameter set corresponds to a low energy 
density value (38.78 J/mm3) if compared to those obtained in 
the planned experimentation (see Table 2).

From a physical point of view, the obtained values can be 
considered reasonable. In fact, when the energy density is too 
high, i.e., increasing laser power and decreasing scan speed, 
the melt pool volume increases, and its viscosity decreases, 
leading to irregularities and a very deep penetration into the 
previously formed layers, and partial evaporation takes place 
[63]. Conversely, when the energy density is too low, a partial 
penetration of the melt pool to the underlying layers occurs, 
wetting is unsatisfactory and droplets are formed [3, 63]. The 
obtained process variables setup, which lies in the process 
window defined by Kempen et al. [63], allows getting parts 
characterised by good mechanical properties, in this case high 
hardness.

6.3 � Estimation of Probability of Occurrence 
of Hardness Defect

According to Eq. (1), the variance of the output variable HB 
was obtained by composing the uncertainty of both the math-
ematical function parameters, reported in Table 4, and the 
input variables, evaluated as the resolution of the AM machine 
(see Table 6). In order to evaluate the standard deviations of 
the input variables, shown in Table 6, it was assumed that 
they were uniformly distributed within their resolution range 
[40]. The variance–covariance matrix used for the calcula-
tion, see Eq. (1), was derived by the software MINITAB®. The 

computations were performed using the software MATLAB® 
and the variance of hardness is finally reported in Eq. (6).

where K =
[

P, v, hd, v ⋅ v, v ⋅ hd, �0, �1, �2, �3, �4, �5
]T.

The probability of occurrence of the defective-output var-
iable HB was obtained under the hypothesis of normal dis-
tribution. Specifically, given the optimal value of hardness 
reported in Table 5, the related variance shown in Eq. (6), 
and the specification limit, the probabilities of occurrence 
of defect, pHB, was derived by applying Eq. (2). The speci-
fication limit, set to 114 HB, was fixed according to techno-
logical requirements for the produced parts. The resulting 
probability is shown in Eq. (7).

7 � Conclusions

Although extensive research has been carried out on the 
optimisation of material properties of components produced 
by additive manufacturing, relatively little attention has been 
paid to the quantification of possible defects occurring in 
the process when it is optimised. Indeed, although the prob-
ability of defects occurring is typically small when the pro-
cess is optimised, this cannot be neglected when planning 
inspections. So far, published studies have been limited to 
the identification of possible relationships between process 
variables and surface properties and their consequent opti-
misation. The present study aimed to contribute to this grow-
ing area of research by presenting a new method to estimate 

(6)VAR(HB) ≈
[

�HB

�K

]T

⋅ cov(K) ⋅
[

�HB

�K

]

= 4.62HB2

(7)pHB = P(HB ≤ LSL) = 0.55%

Fig. 10   Optimisation plot for 
hardness HB (HB)

Table 6   Variability range and 
standard deviation of input 
variables, under the assumption 
of uniform distributions

Input variable Variability range Standard deviation

Laser power (W) (P ± 0.05)
√

0.052∕3 = 2.89 × 10−2

Scan speed (mm/s) (v ± 0.05)
√

0.052∕3 = 2.89 × 10−2

Hatching distance (mm) (hd± 0.005)
√

0.0052∕3 = 2.89 × 10−3
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the probability of occurrence of macro-hardness defect in 
AlSi10Mg parts produced by SLM process with an EOS M 
290 machine, operating under optimal working conditions.

The first step of the proposed methodology aimed to 
determine the effect of some process variables on the Brinell 
macro-hardness of SLM parts, through statistically designed 
experiments. Selected process variables were laser power, 
scan speed and hatching distance of in-skin, i.e. the core, of 
the parts. A 33 full factorial design was realised in order to 
evaluate possible non-linear effects of process variables. It 
was found that scan speed, hatching distance, their interac-
tion, and the quadratic effect of scan speed have the most 
significant influence on the hardness. The response surface 
methodology (RSM) provided the mathematical model 
relating the process variables to the hardness. By optimis-
ing this response surface, it was obtained that hardness is 
maximised when the laser power is 340 W, the scan speed is 
1538.4 mm/s, and the hatching distance is 0.19 mm. After-
wards, the probability of occurrence of hardness defect was 
estimated by exploiting all sources of uncertainty originat-
ing from the mathematical model and the process variables. 
Considering a lower specification limit of 114 HB, the prob-
ability of occurrence of hardness defect was 0.55%.

In addition to the optimal configuration of the process 
variables, the most significant contribution of this study 
has been to propose a methodology based on design of 
experiments, response surface methodology and the com-
position of uncertainties which allows:

•	 The identification of process variables and interactions 
which have a significant effect on the hardness;

•	 The definition of a mathematical model relating process 
variables and hardness;

•	 The estimation of the probability of occurrence of hard-
ness defect under optimal working conditions.

By providing a quantitative assessment of hardness defect 
probability, this study can help researchers and practitioners 
in their understanding of the SLM process in terms of defect 
generation. Operatively, the approach herein presented has 
the great potential of supporting inspection designers in the 
planning of effective quality inspection strategies during the 
early phases of inspection planning.
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