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Abstract
We consider the following two state-dependent effects at the level of route choice: 
inertia to change and, as a consequence of experience, lower perception variance 
for the currently used route. A heteroscedastic extreme value model embodying het-
erogeneity across alternatives in the mean of the random terms is used. Estimations 
based on stated preference data confirm the presence of both state-dependent effects. 
We introduce a new class of stochastic user equilibrium (SUE) models that take 
state-dependent effects into account. The class includes conventional SUE as special 
case. The equilibrium conditions are formulated as fixed-point states of determin-
istic day-to-day assignment processes. At the equilibrium (1) no user can improve 
her/his utility by unilaterally changing route, and (2) if each user shifts from her/his 
current route to her/his newly chosen route the observed route flows do not change. 
The existence of the equilibrium is guaranteed under usually satisfied conditions. A 
modified method of successive averages is proposed for solution. Examples related 
to a two arc network and to the Nguyen-Dupuis network illustrate the model.

Keywords Route choice · State dependence · Inertia · Heteroschedastic extreme 
value · Stochastic user equilibrium

1 Introduction

The unrealistic assumptions of the user equilibrium (UE) principle proposed by 
Wardrop (1952) have long been recognized. The principle predicts traffic equi-
librium flows while accounting for the effects of congestion that arise due to 
users sharing arcs. The assumptions at its basis are that all travellers are rational 
in terms of preferring the lower travel cost routes, have perfect knowledge 
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of network travel costs, and are able to identify the minimum travel cost route 
(Sheffi 1985).

Daganzo and Sheffi (1977) have proposed the stochastic user equilibrium 
(SUE) principle to relax the perfect knowledge assumption of UE. SUE incorpo-
rates a random perception error term in the route cost function to capture users’ 
imperfect knowledge of travel costs (notice that costs are assumed to be certain, 
i.e., uncertainty is on the demand side only, not on the supply side). The demand 
of every origin–destination (OD) pair is, therefore, split up among the various 
routes. The SUE principle states that:

“at equilibrium no user can improve her perceived utility by unilaterally 
changing route”,

Mathematically, SUE is formulated as the problem of seeking flows satisfying 
the condition:

“each user chooses the route with the maximum perceived utility”.

The utility is a theoretical construct that, on the one hand, allows to include 
monetary cost items (such as tolls and charges) in the user’s cost function in addi-
tion to travel time, on the other, it achieves consistency with the formulation of 
the route choice models used which are based on random utility maximisation.

The first route choice model proposed for SUE is probit (Daganzo and Sheffi 
1977; Maher and Hughes 1997) because of the flexible pattern of correlation 
which is particularly suitable in the light of route overlappings. Additionally, pro-
bit can model the variability in perception variances across routes which can stem 
from different trip lengths and different levels of knowledge on network condi-
tions (e.g. routes with low congestion for which users have a more certain percep-
tion). However, probit SUE is computationally burdensome because choice prob-
abilities are not in closed form and require simulation.

After Daganzo and Sheffi (1977), research on SUE has shown significant devel-
opments. We make a distinction between (1) developments that have retained the 
utility maximisation principle, and (2) developments based on a relaxation of this 
principle.

Developments in the first area have essentially tried to achieve computational 
efficiency while mimicking the good variance–covariance matrix properties of 
probit.

Logit SUE suffers from the i.i.d (independently and identically distributed) 
error term assumption, but has the advantages of uniqueness of the solution under 
mild conditions [based on the equivalence with a convex optimization problem; 
Fisk (1980)], and availability of efficient arc-based algorithms to compute equi-
librium flows.

To overcome the limitations of the independently distributed assumption, 
researchers have proposed to either modify the deterministic component of the 
additive (dis)utility function of the logit model, or the distribution of the error 
terms while maintaining the Gumbel distribution for the individual error term. 
The models modifying the deterministic component include the c-logit (Cascetta 
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et  al. 1996; Zhou et  al. 2012) and the path size logit (Ben-Akiva and Bierlaire 
1999; Chen et al. 2012). The models modifying the distribution of the error terms 
are based on the generalised extreme value (GEV) theory by McFadden (1978). 
They include the cross-nested logit (Vovsha 1997; Vovsha and Bekhor 1999; 
Bekhor and Prashker 1999), the pair combinatorial logit (Chu 1989; Bekhor and 
Prashker 1999; Gliebe et al. 1999; Pravinvongvuth and Chen 2005), and the gen-
eralised nested logit (Bekhor and Prashker 2001; Wen and Koppelman 2001).

To overcome the limitations of the identically distributed assumption, Chen 
has proposed OD-specific perception variance (Chen et al. 2012). Other authors 
have departed from logit and used the weibit model developed by Castillo et al. 
(2008) to model route-specific perception variance dependent on trip cost. Differ-
ently from the logit, in weibit the utility has a multiplicative form and the error 
term follows a Weibull distribution. This model has the advantage that, for inde-
pendently distributed error terms, the probabilities are in closed form. The weibit 
has been proposed by Kitthamkesorn and Chen (2013) for SUE in combination 
with a path size element to obviate the independence assumption. Xu et al. (2015) 
have attempted to capture the strengths of both the logit and the weibit by devel-
oping, and applying to SUE, a closed-form hybrid choice model which considers 
simultaneously absolute and relative cost differences (which are accommodated, 
respectively, within the logit model and within the weibit model).

Recent years have seen the appearance of distribution-free approaches as alter-
natives to the probit SUE. Ahipaşaoğlu et al. (2015) have used the cross-moment 
choice model, introduced by Mishra et al. (2012) and Ahipaşaoğlu et al. (2013), 
and have developed a new SUE model that uses the mean and covariance infor-
mation on route utilities but does not assume the particular form of the distribu-
tion. The choice probabilities are computed for the joint distribution that max-
imises expected utility. The equilibrium flows are computed by solving a convex 
optimization problem, which also guarantees uniqueness, in lieu of the simula-
tion-based probit model. The approach, however, does not incorporate additional 
information on the marginal distributions such as skewness or heavy tails. This 
limitation is overcome by the approach based on the marginal distribution choice 
model, proposed by Natarajan et  al. (2009) and Mishra et  al. (2014), which is 
used for SUE by Ahipaşaoğlu et al. (2016).

Developments in the second area have relaxed the utility maximisation princi-
ple on the assumption that this falls short in representing users’ decision making 
processes.

Chorus (2010, 2012) has proposed, on the basis also of empirical evidence, 
the principle of random regret minimisation. The user is assumed to compare a 
considered route with all other routes for their respective costs. If the consid-
ered route has a lower cost than another route there is no regret. If the considered 
route has a higher cost than another route then the regret for the considered route 
equals the cost difference. In this model, the error represents unobserved regret 
which is in turn function of cost differences, while in the classical random utility 
maximisation model the error represents unobserved costs. Bekhor et al. (2012) 
have applied random regret minimisation to SUE.
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Another alternative to random utility maximisation is reference-dependence 
theory (Tverski and Kahneman 1991). According to this theory, carriers of utili-
ties are not states but gains and losses relative to a reference point, with losses val-
ued more heavily than gains (loss aversion). De Borger and Fosgerau (2008), Hess 
et al. (2008) and Delle Site and Filippi (2011) have formulated reference-dependent 
route choice models and estimated random utility versions of these models based 
on logit assumptions for the error terms. All have found evidence of asymmetrical 
responses with respect to gains and losses in travel time and money attributes of 
route alternatives.

Subsequent work has applied this new paradigm to SUE: Delle Site and Filippi 
(2011) have formulated reference-dependent SUE with exogenously given reference 
points, while Delle Site et al. (2013) have considered SUE with endogenous refer-
ence points. Endogenous reference points are based on the idea first proposed for 
deterministic UE and risky choices within a prospect theory framework by Xu et al. 
(2011). Reference-dependent theory has been recently applied to deterministic activ-
ity-travel equilibria by Li et al. (2016).

The contributions of the present paper are in this second area. The paper moves 
from the assumption that route choice is affected by state-dependence effects.

The first state-dependent effect is inertia: users exhibit a propensity to continue 
on the currently chosen route. A body of studies has provided experimental evidence 
supporting the assumption [see Srinivasan and Mahmassani (2000), for a review]. 
Inertia can be explained with habit persistence of users with satisfactory choices, 
and the psychological switching cost consequent to the absence of experience of 
alternatives. Inertia in route choice is commonly modelled by an alternative-specific 
constant associated with the currently chosen route [among the others: Cantillo et al. 
(2007), Cascetta and Cantarella (1991), Srinivasan and Mahmassani (2000); see Xie 
and Liu (2014), for a different approach].

The second state-dependent effect relates to the interpersonal heterogeneity in the 
valuation of the unobserved factors affecting the choice: as a consequence of expe-
rience, this heterogeneity is lower for the currently chosen route. Within a discrete 
choice random utility framework, this translates into a lower perception variance for 
the currently chosen route. Models that consider route-specific variance have been 
reviewed earlier in this introduction. However, the weibit model is not suitable for 
state-dependent effects because of the trip cost dependent variance. Bhat (1995) has 
considered the heteroschedastic extreme value model in the context of mode choice.

The paper addresses the following two research questions: (a) whether the second 
state-dependent effect is also confirmed by experimental evidence, and (b) how to 
define an equilibrium condition for the network in the presence of state-dependence.

Route choice is modelled based on random utility maximisation embodying het-
erogeneity across alternatives in the mean (first effect) and in the variance (second 
effect) of the error terms. The heteroschedastic extreme value model by Bhat (1995) 
is adopted because of the approximated closed-form probabilities.

For equilibrium, the starting point is the equivalence between SUE and steady 
states of discrete-time deterministic day-to-day assignment processes [see, among 
the others, Horowitz (1984), Cantarella and Cascetta (1995), Cantarella and Watling 
(2016), Lo et  al. (2016), Delle Site (2017)]. The adjective deterministic refers to 
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a process where route flows are regarded as deterministic variables. Since state 
dependence is inherently a dynamic phenomenon, equilibrium conditions in the 
presence of state dependence are formulated as fixed-point states of deterministic 
day-to-day assignment processes. The equilibrium model that is obtained is the 
state-dependent counterpart of the reference-dependent SUE formulated in Delle 
Site et al. (2013).

The paper is organised as follows. Section  2 presents the mathematical model 
with the formulation of the equilibrium conditions. Section  3 presents estimation 
results for the route choice model, which provide experimental evidence of the pres-
ence of the second state-dependent effect, as well as numerical results relating to the 
equilibrium of two (one smaller and one larger) illustrative networks. Directions for 
further research conclude.

2  Network equilibrium

2.1  Network representation and assumptions

The model is formulated according to the notation listed in the “Appendix”.
Consider a strongly connected road transportation network. The associated graph 

is the couple of sets of nodes and directed arcs. Let A be the arc set and a the arc 
index. Origins (O) and destinations (D) constitute a subset of nodes. Let W be the set 
of OD pairs and w the OD pair index. Let Rw be the set of simple routes of OD pair 
w , and r the route index.

Consider day n . For each route r ∈ Rw , Fw(n)
r

 denotes the corresponding route 
flow. We denote by f (n)

a
 the flow on arc a . The arc flows are obtained from the route 

flows by:

where �w
a,r

 is the element of the arc-route incidence matrix of OD pair w whose value 
is 1 if route r includes arc a , is 0 otherwise.

The demand flow of the OD pair w is denoted by dw . Travel demand is fixed and 
does not change over time. We have the demand constraints:

The feasible route flows are all the non-negative Fw(n)
r

 satisfying the demand con-
straints (2).

Let Tw(n)
r

 denote the travel time on route r of OD pair w . Let t(n)
a

 denote the travel 
time on arc a . The arc travel times are continuous functions of the arc flows:

(1)f (n)
a

=
∑

w∈W

∑

r∈Rw

�w
a,r

⋅ Fw(n)
r

a ∈ A,

(2)dw =
∑

r∈Rw

Fw(n)
r

w ∈ W.

(3)t(n)
a

= ta
(
f (n)
a

, a ∈ A
)

a ∈ A.
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The route travel times are obtained from the arc travel times by the standard arc-
additive model:

2.2  Deterministic day‑to‑day assignment process

The deterministic day-to-day assignment process requires modelling of users’ 
behaviour in terms of the following.

Forecasting process  How users forecast the travel times that they will experience 
today, given the travel times experienced yesterday

Choice process  How users make a choice today, given the forecasted travel 
times, the time-independent monetary cost, and the choice 
made yesterday

Users behave according to a stochastic perception of travel (dis)utility. The sys-
tematic utility Vw(n)

r|j  of route r is assumed dependent on the travel time experienced 

the day before Tw(n−1)
r

 , and the time-independent monetary cost Mw
r
 . In addition, 

there is the term accounting for inertia: the systematic utility of the newly chosen 
route r is higher if this route is the route j chosen the day before. Thus, the system-
atic utility updating recursive equations are:

where �T , �M and � are estimation coefficients, Iw
r|j the indicator function. The third 

term accounts for inertia: it is equal to � if the newly chosen route r is equal to the 
route j chosen the day before (because Iw

r|j = 1 ), it is equal to 0 otherwise (because 

Iw
r|j = 0).

The estimation coefficients �T , �M and � have the economic meaning of marginal 
utilities of, respectively, travel time, monetary cost and inertia.

The choice process considers the conditional probabilities Pw(n)

r|j  of choosing route 

r at day n having chosen route j the day before.
Conditional probabilities are based on additive random utility models. The utility 

of a route is the sum of the systematic part plus a random term. The random terms 

(4)Tw(n)
r

=
∑

a

�w
a,r

⋅ t(n)
a

r ∈ Rw,w ∈ W.

(5)V
w(n)

r|j = �T ⋅ Tw(n−1)
r

+ �M ⋅Mw
r
+ � ⋅ Iw

r|j r, j ∈ Rw,w ∈ W,

(6)Iw
r|j =

1j = r

0j ≠ r
,
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summarise factors that are unobserved by the modeler and account for inter-personal 
heterogeneity of preferences.

For each OD pair w ∈ W , the vector of the conditional on j random terms �w(n)
r|j  , 

r ∈ Rw , is assumed to follow a heteroschedastic extreme value distribution, i.e., the 
random terms follow a type I extreme value distribution and are independent, but 
not identically distributed across route alternatives. The variance of each term �w(n)

r|j  , 

r ∈ Rw , is given by 
(
�w
r|j ⋅ �

)2
/

6 where �w
r|j is the scale parameter. We set the scale 

parameter equal to 𝜃 < 1 when the newly chosen route is the route chosen the day 
before, we set the scale parameter equal to 1 otherwise:

With this normalization, required for identification problems and to set the overall 
scale of utility, the variance of the route chosen the day before is estimated relative 
to the normalized variance of the other routes which is equal to �2∕6 (Train 2003).

Conditional on the choice of j the day before, users who choose route r at day n 
are those who perceive this route to maximize their utility. The conditional choice 
probabilities are given by (Bhat 1995):

Probabilities have not an exact closed form. They can be computed by Gauss-
Laguerre quadrature (Press et  al. 1986), which easily yields the approximated 
closed-form expression:

where xs is a node and �s is a weight, s = 1,… , S . Nodes and related weights are in 
Rabinowitz and Weiss (1959).

It is seen from formulas (8) and (9), and the way the scale parameters enter the 
probability formula, that the normalization of the scale parameters does not affect 
the probabilities.

The model reduces to a multinomial logit with inertia when the variances are 
equal across alternatives. Route overlapping effects can be accounted for at the level 
of the systematic term as in the common-factor logit model proposed by Cascetta 
et al. (1996) and in the path size logit proposed by Ben-Akiva and Bierlaire (1999).

(7)�w
r|j =

�j = r

1j ≠ r
.

(8)

P
w(n)

r|j =
t=∞

�
t=−∞

[
∏

r�∈Rw, r�≠r

e−e
−

(
V
w(n)
r|j −V

w(n)

r� |j
+�w

r|j ⋅t
)
∕�w

r� |j

]
⋅ e−e

−t

⋅ e−tdt r, j ∈ Rw, w ∈ W.

(9)

P
w(n)

r�j =

S�

s=1

�s ⋅�
�
xs
�
=

S�

s=1

�s ⋅ e
−

∑
r�∈Rw ,r�≠r

e

V
w(n)
r�j −V

w(n)

r� �j
�w
r� �j

⋅x
�w
r�j ∕�

w
r� �j

s

r, j ∈ Rw,w ∈ W,



 C. Castaldi et al.

1 3

The conditional probabilities are dependent, via the utility updating Eqs. (5) and 
(6), on the travel times experienced the day before and, therefore, on the route flows 
of the day before Fw(n−1)

r
 , r ∈ Rw, w ∈ W:

The route flow updating recursive eqns are:

2.3  State‑dependent stochastic user equilibrium

The steady states associated with the process (11) are governed by the fixed-point 
eqns:

where |Rw| denotes the cardinality of the set Rw . Equations (13) are justified to sat-
isfy demand constraints.

The fixed point Eqs. (12) and (13) represent states of equilibrium which can be 
seen as generalization of SUE: we will refer to them as State-Dependent Stochastic 
User Equilibrium (SDSUE).

In words, the SDSUE represents the conditions where:

“no user can improve her/his utility by unilaterally changing route”, and

“if each user shifts from her/his currently used route to her/his newly chosen 
route, the observed route flows do not change”.

For clarification of the statement, the matrix of transition flows, i.e. the flows 
of shifters from the currently used route to the newly chosen route, is shown in 

(10)P
w(n)

r|j = Pw
r|j
(
Fw(n−1)
r

, r ∈ Rw, w ∈ W
)

r, j ∈ Rw,w ∈ W.

(11)Fw(n)
r

=
∑

j∈Rw

Pw
r|j
(
Fw(n−1)
r

, r ∈ Rw, w ∈ W
)
⋅ F

w(n−1)

j
r ∈ Rw, w ∈ W.

(12)Fw∗
r

=
∑

j∈Rw

Pw
r|j
(
Fw∗
r
, r ∈ Rw, w ∈ W

)
⋅ Fw∗

j
r = 1,… |Rw| − 1; w ∈ W,

(13)Fw∗
|Rw| = dw −

|Rw|−1∑

r=1

Fw∗
r

w ∈ W,

Fig. 1  Transition flow matrix at SDSUE for OD pair w
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Fig.  1. In each column we have a newly chosen route, in each row a currently 
used route. On the main diagonal (north–west to south–east) we find the number 
of users who stay on the given route. The fixed-point Eqs. (12) express the col-
umn sums.

It is possible to state existence conditions for SDSUE using Brouwer’s fixed-
point theorem: existence is satisfied, under the assumptions here, because the fea-
sible set of route flows is non-empty, compact and convex, and the map of the 
fixed-point eqns is continuous.

Based on the theory of discrete dynamical systems (Parker and Chua 1989; 
Galor 2010), to ensure local stability of the steady states, i.e. of the fixed points, 
it is necessary and sufficient that the Jacobian matrix, computed in the fixed point, 
of the transition functions in the right-hand side of Eq. (11) has all eigenvalues in 
absolute values less than 1. This condition constraints the eigenvalues to lie in the 
interior of a circle of unit radius in the complex (Argand) plane. This means that 
if and only if these conditions are satisfied, the system, upon a sufficiently small 
perturbation, converges back to the fixed point.

It is convenient to re-write in compact form the fixed-point problem using a 
vector notation (vectors in bold):

where � is the 
��∑

w∈W �Rw�
�
× 1

�
 vector of route flows, and � the 

��∑
w∈W �Rw�

�
× 1

�
 

vector mapping representing the functions in the right-hand sides of Eqs. (12) and 
(13).

The SDSUE collapses to a conventional SUE (Daganzo and Sheffi 1977) when 
� = 0 and the variances are constant across alternatives.

In fact, when this condition occurs, choice probabilities are not affected by the 
currently used route:

The SDSUE fixed-point problem (12) and (13) reduces then to the conven-
tional SUE fixed-point problem:

which can be re-written in compact form:

where �̃ is the 
��∑

w∈W �Rw�
�
× 1

�
 route-based expanded version of the demand vec-

tor q =
[
q1,… , qw

]
 , � is the 

��∑
w∈W �Rw�

�
× 1

�
 vector mapping of probabilities, and 

“ ◦ ” denotes the Hadamard, i.e. componentwise, product
(x◦y is the vector whose i-th component is xi ⋅ yi).

2.4  Solution algorithm

To solve the problem we use a heuristic approach based on the method of suc-
cessive averages (MSA). The formulation of SDSUE as a fixed point in the route 

(14)F = � (F), F ≥ 0,

(15)Pw
r|j = Pw

r
r, j ∈ Rw, w ∈ W.

(16)Fw
r
= qw ⋅ Pw

r
r, j ∈ Rw, w ∈ W,

(17)F = q̃◦P,
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flows suggests a route flow-based MSA. A route-based algorithm is in any case 
the only viable option since the route utilities are not additive in the constitu-
ent arcs because of the route-specific mean (monetary cost and inertia term) and 
route-specific variance of the random terms. The main steps are, in compact nota-
tion, as follows.

The symbol ‖‖�∞‖‖ denotes the infinity, or maximum, norm of the vector x with 
components xi , i.e. ���∞�� = maxixi ‖�‖∞ = max

i

��xi�� . The convergence tolerance 

is expressed by �.
Notice that in the first step only one conditional probability vector is com-

puted, the one conditional on the current route set equal, for each OD pair, to the 
minimum travel time route in free-flow conditions. In contrast, in the second step, 
for each OD pair, the algorithm computes recursively all conditional probability 
vectors, i.e. one probability vector for each available current route.

The algorithm generates a sequence of feasible route flows, i.e. satisfying both 
the demand and non-negativity constraints. At each iteration the solution �k+1 is 
the average of the first k solutions �

(
�k

)
 , hence the name successive averages. As 

in the MSA for conventional SUE, the convergence can be slow because of the 
decreasing flow correction which depends on the factor 1∕k.

Enumeration of routes is required, therefore, in large networks the route set 
may need to be reduced selectively to a subset of routes that is justified behav-
iourally [reviews of selection criteria are in Bekhor and Toledo (2005), Cascetta 
(2009), Prato (2009).

When � = 0 and the variances are constant across alternatives, the algorithm 
reduces to the conventional route flow-based MSA for SUE. It is possible to prove 
that the MSA algorithm converges to SUE if probabilities are logit (Powell and 
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Sheffi 1982). Conditions of convergence of MSA to SUE for other random utility 
models are investigated in Cantarella and Velonà (2010).

3  Numerical results

3.1  Estimation results

Data on route choice behavior are from a stated preference survey which took 
place in Rome and was used in a previous work to estimate a reference-dependent 
logit (Delle Site and Filippi 2011). Three models have been estimated (Table 1): 
standard multinomial logit (MNL1), multinomial logit with inertia (MNL2), and 
heteroschedastic extreme value (HEV). The estimation was carried out using 
NLOGIT statistical software.

3.2  State‑dependent stochastic user equilibrium: illustrative example—two arc 
network

We consider a two-arc network representing a town-centre route and a bypass route, 
both without toll.

Table 1  Estimation results (t-stat in brackets)

MNL1 MNL2 HEV

Travel time (minutes) coefficient �
T

− 0.10276 (− 9.150) − 0.11434 (− 9.587) − 0.1617 (− 5.284)
Travel cost (EUR/trip) coefficient �

C
− 1.48148 (− 12.226) − 1.468 (− 12.073) − 2.202 (− 6.181)

Inertia coefficient η – 0.5083 (4.480) –
Currently used route scale parameter θ – – 0.4324 (5.189)
Non-currently used route scale 

parameter
– – 1 (fixed)

Adjusted �2 0.41479 0.43337 0.42435

Table 2  SDSUE with MNL2: sensitivity to inertia coefficientη 

η Town-centre route Bypass route Time 
expendi-
ture

Flow (veh/h) Time (min) Flow (veh/h) Time (min) (h)

0 (SUE) 560 3.96 640 2.79 66.7
0.4 554 3.92 646 2.80 66.3
0.8 548 3.90 652 2.80 66.0
1.2 543 3.88 657 2.80 65.8
1.6 540 3.87 660 2.80 65.6
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We assume a total demand of 1200 veh/h. For supply, BPR volume-delay func-
tions derived empirically for similar routes are used. The functions (in hours) are 
T = 0.057 ⋅

[
1 + (F∕800)5.2

]
 for the town-centre route, and 

T = 0.045 ⋅

[
1 + 0.68 ⋅

(
F

1230

)4.6
]
 for the bypass route.

Table 2 shows the SDSUE results when route choice is MNL2 (inertia effect). 
As the magnitude of the state-dependence effect increases (the inertia coefficient η 
increases), the flow on the town-centre route, which is the route where travel time is 
higher, decreases. At the same time the time expenditure decreases.

Table 3 shows, in the case = 0.5083 (the estimation value), the matrix of transi-
tion route flows. The route flows are found in the bottom line. The last column on 
the right provides the flows having each a given current route. The row sums equal 
the column sums. Notice that the matrix is symmetric, which is an obvious property 
with two alternatives only.

The Table is useful to comprehend the intuition of SDSUE. Of the 552 veh/h 
(= 328 + 224) which are found on the town centre route, 328 veh/h stay on this 
route, while the remaining 224 veh/h are those shifting to the bypass route. Of the 
648 veh/h (224 + 424) which are found on the bypass route, 224 veh/h shift to the 

Table 3  SDSUE with MNL2 
and inertia coefficient η= 
0.5083: transition route flows

Newly chosen route Total

Town-centre 
route

Bypass route

Currently used route
 Town-centre route 328 224 552
 Bypass route 224 424 648
 Total 552 648 1200

Fig. 2  Day-to-day dynamics
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town-centre route, while the remaining 424 stay on the bypass route. Therefore, if 
the 224 + 224 veh/h update their route to their newly chosen route, the total flow 
on each route does not change.

We have computed the two eigenvalues �1 and �2 of the Jacobian matrix, at 
the fixed point, of the transition functions for the two flows. We have obtained 
�1 = 0.489 and �2 = − 0.824. Since both eigenvalues are real and inside the unit 
circle, the SDSUE is a stable node, i.e., the system, upon a sufficiently small per-
turbation, converges back without any oscillation to this state (Parker and Chua 
1989; Cantarella 1993). Figure 2 shows the day-to-day dynamic behavior, when 
the initial point is a stochastic network loading with conventional logit and free-
flow travel times. The system converges monotonically to the SDSUE fixed point, 
a manifestation of global monotonic convergence.

Table 4 shows the SDSUE results when route choice is HEV (heteroschedastic-
ity effect). The formulas of probabilities of Eqs. (8) have been computed with 20 
nodes ( S = 20). This value for S has proved sufficient based on the approximation 
obtained in terms of sum of probabilities (equal to unity). Table 4 shows that as 
the magnitude of the state-dependence effect increases (the scale parameter of the 
currently used route decreases), the flow on the town-centre route, which is the 
route where travel time is higher, decreases, and the time expenditure decreases 
too.

Table 5 shows, in the case the scale parameter of the currently used route is 
0.4324 (the estimation value), the symmetric matrix of transition route flows.

Table 4  SDSUE with HEV: sensitivity to the scale parameter of the currently used route �

� Town-centre route Bypass route Time 
expendi-
ture

Flow (veh/h) Time (min) Flow (veh/h) Time (min) (h)

1 (SUE) 547 3.89 653 2.80 66.0
0.75 543 3.88 657 2.80 65.8
0.5 540 3.86 660 2.80 65.6
0.25 535 3.84 665 2.81 65.4

Table 5  SDSUE with HEV and 
scale parameter of currently 
used route � = 0.4324: transition 
route flows

Newly chosen route Total

Town-centre 
route

Bypass route

Currently used route
 Town-centre route 209 330 539
 Bypass route 330 331 661
 Total 539 661 1200
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Table 6  Arc-route incidence 
relationship for the Nguyen-
Dupuis network

OD pair Route Arc sequence OD pair Route Arc sequence

(1,2) 1 2-18-11 (1,3) 9 2-17-8-14-16
2 2-17-8-14-15 10 2-17-7-10-16
3 2-17-7-10-15 11 1-6-13-19
4 2-17-7-9-11 12 1-6-12-14-16
5 1-6-12-14-15 13 1-5-8-14-16
6 1-5-8-14-15 14 1-5-7-10-16
7 1-5-7-10-15
8 1-5-7-9-11

(4,2) 15 4-12-14-15 (4,3) 20 4-13-19
16 3-6-12-14-15 21 4-12-14-16
17 3-5-8-14-15 22 3-6-13-19
18 3-5-7-10-15 23 3-6-12-14-16
19 3-5-7-9-11 24 3-5-8-14-16

25 3-5-7-10-16
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3.3  State‑dependent stochastic user equilibrium: illustrative example—
Nguyen‑Dupuis network

In the second example, the Nguyen-Dupuis network (Nguyen and Dupuis 1984) 

Table 7  Arc characteristics of 
the Nguyen-Dupuis network

Arc Free-flow 
travel time

Capacity Arc Free-flow 
travel time

Capacity

1 7 300 11 9 500
2 9 200 12 10 550
3 9 200 13 9 200
4 12 200 14 6 400
5 3 350 15 9 300
6 9 400 � = 1 16 8 300
7 5 500 17 7 200
8 13 250 18 14 300
9 5 250 19 11 200
10 9 300

Table 8  SDSUE with MNL2: 
transition and total route flows 
for OD pair (1,3)

Newly chosen route Total

9 10 11 12 13 14

Currently used route
 9 2.9 3.4 7.1 5.5 3.5 6.8 29.2
 10 3.4 10.9 13.6 10.5 6.7 13.0 58.1
 11 7.0 13.6 46.8 21.7 13.8 27.0 129.9
 12 5.3 10.4 21.6 27.6 10.6 20.7 96.2
 13 3.4 6.6 13.7 10.6 11.2 13.1 58.6
 14 6.6 13.0 26.9 20.7 13.2 42.8 123.2

Total 28.6 57.9 129.7 96.6 59 123.4 ≈ 495
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Fig. 4  SDSUE with MNL2: convergence of the algorithm
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is used. The network, which includes 13 nodes, 19 directed arcs and 4 OD pairs, 
is shown in Fig. 3.

The arc-route incidence relationship is shown in Table 6. There is a total of 25 
routes. The OD demand flows are q1,2 = 660, q1,3 = 495, q4,2 = 412.5, q4,3 = 495 (as 
assumed in Xu et al. 2011). The following BPR volume-delay functions are used: 

ta = t◦
a
⋅

[
1 + 0.15 ⋅

(
fa

ca

)4
]
 , where the free-flow travel time t◦

a
 and the capacity ca 

are given, for each arc, in Table  7 (the values in the Table are from Xu et  al. 
2011). No arc is subject to a toll. The SDSUE is found using the MSA algorithm 
of Sect. 2.4.

Table 9  SDSUE with MNL2: sensitivity of route and arc flows to inertia coefficient �

Route flows Arc flows

Route � = 0 (SUE) � = 0.5083 � = 1.5 Arc � = 0 (SUE) � = 0.5083 � = 1.5

OD pair (1,2) 1 694.2 694.1 694.5
1 251.8 260.4 278.6 2 460.8 460.9 460.5
2 15.1 14.7 13.6 3 472.0 470.9 468.8
3 29.9 29.0 26.5 4 435.5 436.6 438.7
4 73.8 69.6 62.2 5 740.7 740.6 739.4
5 47.9 47.4 45.8 6 425.5 424.5 423.9
6 30.3 29.6 27.3 7 755.9 752.6 747.1
7 60.8 59.8 57.7 8 193.8 188.4 174.3
8 150.4 149.5 148.4 9 369.0 367.5 364.9
OD pair (1,3) 10 386.8 385.1 382.2
9 30.3 29.2 25.8 11 620.8 627.9 643.5
10 59.8 58.0 53.8 12 496.6 496.5 497.9
11 129.6 129.9 131.2 13 364.4 364.6 364.6
12 95.0 96.2 99.3 14 690.5 684.9 672.1
13 60.1 58.6 55.4 15 451.7 444.6 429.0
14 120.2 123.2 129.5 16 625.6 625.4 625.4
OD pair (4,2) 17 209.0 200.4 181.9
15 133.5 133.3 132.9 18 251.8 260.4 278.6
16 46.3 45.3 43.8 19 364.4 364.6 364.6
17 29.3 28.1 25.4
18 58.6 57.5 56.1
19 144.8 148.5 154.3
OD pair (4,3)
20 173.1 174.2 175.2
21 128.8 129.1 130.6
22 61.6 60.5 58.2
23 45.2 45.3 45.6
24 28.7 28.3 26.8
25 57.5 57.7 58.6
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3.3.1  Inertia effect

This section presents the SDSUE results when route choice is MNL2 (inertia 
effect). Table 8 shows the SDSUE route flows together with the transition flows 
for OD pair (1–3). There can be small differences between the row sums and the 
column sums due to the approximate convergence of the computations. In all 
cases, these deviations are less than unity because the algorithm uses a conver-
gence tolerance. Notice that in this network also, the matrix of transition flows is 
symmetric.

Fig. 5  SDSUE with MNL2: 
variation of standard deviation 
of route flows with inertia coef-
ficient �
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Fig. 6  SDSUE with MNL2: 
variation of total travel time 
spent on the network with iner-
tia coefficient η 
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Figure 4 shows the convergence of the MSA algorithm. Initially, the infinity norm 
changes non-monotonically as the number of iterations increases, then it decreases 
monotonically and with a decreasing rate. The number of iterations required for con-
vergence is 602.

The results of the sensitivity analysis with respect to inertia are shown in Table 9. 
The Table shows the SDSUE route and arc flows. In the Table, three values for the 
inertia are considered: the case � = 0 which is the conventional SUE, i.e., no inertia 
effect; the base case with the estimation value � = 0.5083; and a case with a marked 
inertia (η = 1.5).

It is possible to detect the following pattern when the distribution of route 
flows for a given OD pair is considered. If the standard deviation of route flows 
is computed for each OD pair, the standard deviation increases with the iner-
tia effect. This means that, as the inertia effect increases, the OD flow is dis-
tributed across routes with higher variability. This pattern is shown in Fig.  5, 
where the standard deviation of route flows is computed after having normal-
ised route flows as percentage values of the corresponding OD flows. The same 
pattern had been found in the two-arc network example (Table 2). Another pat-
tern which can be detected relates to the total travel time spent on the network. 

Table 10  SDSUE with HEV: 
transition and total route flows 
for OD pair (1,3)

Newly chosen route Total

9 10 11 12 13 14

Currently used route
 9 0.0 2.9 7.2 5.4 3.1 7.0 25.6
 10 2.9 0.9 16.5 12.4 7.0 16.0 55.7
 11 7.2 16.5 19.3 30.6 17.1 39.4 130.1
 12 5.4 12.4 30.5 7.9 12.8 29.5 98.5
 13 3.0 6.9 17.0 12.8 1.1 16.5 57.3
 14 7.0 16.0 39.5 29.7 16.6 17.6 126.4

Total 25.5 55.6 130.0 98.8 57.7 126.0 ≈ 495
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Fig. 7  SDSUE with HEV: convergence of the algorithm
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This quantity decreases for each OD pair as the inertia effect increases. This is 
shown in Fig. 6. The same pattern had been found in the two-arc network exam-
ple (Table 2).

3.3.2  Heteroscedasticity effect

This section presents the SDSUE results when route choice is HEV (heterosce-
dasticity effect). To reach a satisfactory approximation in the probability sums, 

Table 11  SDSUE with HEV: sensitivity of route and arc flows to scale parameter of the currently used 
route �

Route flows Arc flows

Route � = 0.25 � = 0.4324 � = 1 (SUE) Arc � = 0.25 � = 0.4324 � = 1 (SUE)

OD pair (1,2) 1 694.6 694.9 695.3
1 277.8 279.9 283.0 2 460.2 460.1 459.6
2 6.7 7.2 7.4 3 469.3 469.0 468.5
3 27.6 26.6 24.6 4 438.2 438.5 439.0
4 66.0 64.6 63.9 5 738.3 738.5 737.5
5 44.9 45.7 45.6 6 425.7 425.4 426.4
6 28.7 27.7 25.4 7 749.1 748.1 748.2
7 58.4 58.3 57.9 8 171.7 170.6 166.2
8 149.9 150.1 152.4 9 365.0 364.6 365.2
OD pair (1,3) 10 384.0 383.4 382.9
9 25.6 25.6 25.2 11 642.8 644.5 648.0
10 56.4 55.7 55.7 12 499.6 499.5 501.1
11 130.0 130.1 131.0 13 364.4 364.4 364.3
12 98.5 98.5 99.1 14 671.3 670.2 667.3
13 58.6 57.3 56.5 15 429.7 428.0 424.5
14 125.7 126.4 127.5 16 625.6 625.6 625.7
OD pair (4,2) 17 182.5 180.3 176.9
15 134.2 133.9 134.1 18 277.8 279.9 282.8
16 46.3 45.3 45.3 19 364.4 364.4 364.3
17 25.6 26.1 25.8
18 57.2 57.2 58.3
19 149.1 149.9 148.9
OD pair (4,3)
20 174.5 174.3 173.5
21 129.5 130.3 131.4
22 59.8 59.6 59.8
23 46.1 45.6 45.5
24 26.4 26.5 25.9
25 58.6 58.7 58.9
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the formulas of probabilities of Eqs.  (9) have been computed with 40 nodes 
( S = 40).

Table 10 shows the SDSUE route flows together with the symmetric matrix of 
transition flows for OD pair (1-3) for the estimation value of the scale parameter 
of the currently used route � = 0.4324. As in the inertia effect case, there can be 
small differences between the row sums and the column sums and between the 
symmetric elements due to the approximate convergence of the computations.

Figure 7 shows the convergence of the MSA algorithm. Similarly to the inertia 
effect case, the infinity norm changes initially non-monotonically as the number 

Fig. 8  SDSUE with HEV: vari-
ation of standard deviation of 
route flows with scale parameter 
of the currently used route �
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Fig. 9  SDSUE with HEV: 
variation of total travel time 
spent on the network with scale 
parameter of the currently used 
route θ 
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of iterations increases, then it decreases monotonically and with a decreasing 
rate. The number of iterations required for convergence, with � = 1 , is 691.

The results of the sensitivity analysis with respect � = 0.25 to the scale param-
eter of the currently used route are shown in Table  11. The Table shows the 
SDSUE route and arc flows. In the Table, three values for the heteroscedastic-
ity are considered: a case with � = 0.25; the base case with the estimation value 
� = 0.4324; and the case � = 1 which is the conventional SUE, i.e. no heterosce-
dasticity effect.

Figure  8 shows the standard deviation of route flows which is computed after 
having normalised route flows as percentage values of the corresponding OD flows. 
Differently from the inertia effect case, it is not possible to detect a monotonic pat-
tern with the parameter controlling the magnitude of the heteroscedasticity effect. 
Figure 9 shows that the total travel time spent on the network is practically constant 
with respect to the heteroscedasticity effect.

4  Conclusion

In this paper, a state-dependent model is considered for route choice. Experimen-
tal evidence based on stated-preference data confirms the presence of inertia and 
heteroscedasticity effects in route choice. The state-dependent stochastic user 
equilibrium, in short SDSUE, is formulated as a fixed-point problem in the route 
flows. SDSUE is equivalent to the steady states of a deterministic day-to-day 
assignment process. Conventional SUE is a special case of SDSUE. It is proved 
that the solution of SDSUE exists under conditions usually satisfied in practice. 
Uniqueness of the solution is an open problem.

Further research is needed on alternative SDSUE formulations that use other 
choice models able to capture the heteroscedasticity effect in lieu of the heterosce-
dastic extreme value model, such as the probit model.

A comparison has been performed between SDSUE and conventional SUE for a 
simple two-arc network and for the Nguyen-Dupuis network. Results indicate that 
SDSUE produces a compatible traffic flow pattern compared to the conventional 
SUE, with magnitudes of the differences in flows dependent on the parameter con-
trolling the state-dependent effect. The numerical illustration has considered the 
route choice model as a function of travel time only, but the formulation proposed 
is more general because it accommodates a full utility function with the possibility 
to include additional explanatory variables, in particular those accounting for route 
overlappings. For convenience, the applications have considered the inertia and the 
heteroscedasticity effect separately, but it would be reasonable to investigate also the 
simultaneous presence of the two effects in route choice and the attendant SDSUE 
results.

The SDSUE is a condition where, from a macro-level perspective, the observed 
route flows do not change, whereas, from a micro-level perspective, each user 
updates her currently used route to her newly chosen route. Thus, there is an inherent 
day-to-day dynamics in SDSUE, as it also occurs in the reference-dependent SUE 
(Delle Site et al. 2013). The numerical results are indicative that the magnitudes of 
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the flow shifts are subject to a symmetry condition, whereby the number of shifters 
from route i to route j equals the number of shifters from route j to route i.

The insights presented are based on a number of assumptions that are common to 
basic equilibrium problems: static assignment, fixed demand and single user class in 
terms of marginal disutility of travel time. Extension of the framework here to more 
general problems will require additional research.

Appendix

Notation

The following notation (in alphabetical order) is used. The symbols are, wherever 
possible, self-explaining because based on the initials of the associated quantity. 
Quantities (flows and travel times) that are related to arcs are lowercase, quantities 
that are related to routes are uppercase.

a  Arc
A  Arc set
Ca  Capacity of arc
dw  Demand of OD pair w
fa  Flow of arc a
Fw
r
  Flow of route r of OD pair w

�  Vector of route flows
k  Iteration counter
Iw
r|j  Indicator function related to the identity of route r at day n and route j the 

day before for OD pair w
j  Route
Mw

r
  Monetary cost of route r of OD pair w

n  Day
P
w(n)

r|j   Conditional probability of choosing route r at day n having chosen route j the 

day before for OD pair w
r  Route
Rw  Route set of OD pair w
t(n)
a

  Travel time of arc a at day n
t0
a
  Free-flow travel time of arc a

Tw(n)
r

  Travel time of route r of OD pair w at day n
V
w(n)

r|j   Conditional systematic utility of route r of OD pair w at day n having chosen 

route j the day before
w  OD pair
W  OD pair set
�T  Estimation coefficient of route travel time
�M  Estimation coefficient of route monetary cost
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�  Algorithm convergence tolerance
�w
a,r

  Entry of the arc-route incidence matrix
�  Estimation coefficient of the inertia term
�  Scale parameter of the route chosen the day before
�  Eigenvalue of the Jacobian, computed in the fixed point, of the transition 

functions
�  Route-flow based fixed-point map
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