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Abstract Among the various types of metal matrix com-

posites, SiC particle-reinforced aluminum matrix compos-

ites (SiCp/Al) are finding increasing applications in many

industrial fields such as aerospace, automotive, and elec-

tronics. However, SiCp/Al composites are considered as

difficult-to-cut materials due to the hard ceramic rein-

forcement, which causes severe machinability degradation

by increasing cutting tool wear, cutting force, etc. To

improve the machinability of SiCp/Al composites, many

techniques including conventional and nonconventional

machining processes have been employed. The purpose of

this study is to evaluate the machining performance of

SiCp/Al composites using conventional machining, i.e.,

turning, milling, drilling, and grinding, and using noncon-

ventional machining, namely electrical discharge machin-

ing (EDM), powder mixed EDM, wire EDM,

electrochemical machining, and newly developed high-ef-

ficiency machining technologies, e.g., blasting erosion arc

machining. This research not only presents an overview of

the machining aspects of SiCp/Al composites using various

processing technologies but also establishes optimization

parameters as reference of industry applications.

Keywords SiCp/Al � Machining � Conventional � Wear

mechanism � Nonconventional � Performance

1 Introduction

Metal matrix composites (MMCs) are prepared by com-

bining a metallic matrix with hard ceramic reinforcements.

Usually, metals including aluminum, magnesium, cobalt,

titanium, copper, and various alloys of these materials can

be adopted as a matrix. Meanwhile, the reinforcement

material is generally a hard ceramic material, such as SiC,

TiC, B4C [1], Si3N4, AlN, Al2O3, TiB2, ZrO2, and Y2O3

[2]. The most widely used metal matrix materials for

producing MMCs are aluminum and its alloys, because

their ductility, formability, and low density can be com-

bined with the stiffness and load-bearing capacity of the

reinforcement [3]. Among numerous reinforcement mate-

rials, SiC is usually employed because it has some unique

advantages, e.g., low cost, good hardness, and high cor-

rosion resistance, compared to other reinforcements [4].

With the combined advantages of aluminum matrix mate-

rials and SiC reinforcement, SiCp/Al MMCs have been

certified and are steadily advancing owing to their excellent

properties such as high strength, low density, and high

wear resistance. They are widely used in the automobile

and aircraft industries, structural applications, and many

other systems [5]. Since SiCp/Al composites consist of a

metal matrix and a SiC reinforcement, different volume or

weight percentage SiC in the matrix materials forms dif-

ferent SiCp/Al composites, e.g., 10% (mass fraction), 20%

(volume fraction), 45% (mass fraction) and 65% (volume

fraction) SiCp/Al matrix composites. A typical micrograph

of a SiCp/Al MMC with 65% (volume fraction) SiC par-

ticle reinforcement is shown in Fig. 1 [6].
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The specific properties of SiC make it very suitable for

the production of Al MMCs [7]. However, on the pro-

cessing aspect, the hard reinforcement causes an

inevitable and severe problem of limiting the machining

performance and rapid tool wear [8], which results in poor

machin ability and cost increase [9]. Consequently, it is not

surprising that SiCp/Al composites are considered difficult-

to-machine [10]. To date, many attempts have been made

to improve the machinability of this hard material. Fig-

ure 2a indicates a steady increase in the number of studies

on the machining of SiCp/Al composites based on available

publications since the 1990s. Figure 2b depicts the distri-

bution of SiCp/Al machinability studies conducted in

industrial countries. In Fig. 3a, the statistics of the studied

SiC (volume or weight fraction) according to appearance

frequency in the literature are presented, and the SiC

fractions are classified into 10 divisions. It is indicated that

most studies are focused on SiCp/Al composites with low

SiC fractions, e.g., 5%–20% (volume fraction). Neverthe-

less, in recent years, increasing attention has been paid to

the machining investigation of SiCp/Al with high-SiC

fractions, such as 50%, 56% and 65% (volume fraction).

Both conventional and nonconventional machining

methods have been adopted for the processing of SiCp/Al

matrix composites. Figure 3b displays the approximate

distribution of the machining methods utilized in the

studies. It can be observed that turning, milling, and dril-

ling are the most commonly used conventional machining

technologies, whereas electrical discharge machining

(EDM) is the most frequently used nonconventional

machining technology. Besides EDM, wire EDM, and

electrochemical machining (ECM), there are some other

nonconventional machining technologies that have been

adopted for improving the machining of SiCp/Al matrix

composites, e.g., the newly developed arc discharge

machining (ADM) [11]. This review considers both con-

ventional and nonconventional machining studies con-

ducted by numerous researchers to summarize the

machinability performance of SiCp/Al matrix composites

and to offer transferable knowledge for industry

application.

2 Fabrication and properties of SiCp/Al matrix
composites

2.1 Fabrication

Different fabrication techniques are used for the prepara-

tion of aluminum MMCs, e.g., stir casting, powder metal-

lurgy, squeeze casting, in-situ process, deposition

technique, and electroplating [12]. The widely used pro-

cesses are stir casting and squeeze casting [13]. Stir casting

(vortex technique) is generally considered as the most

Fig. 1 Micrograph of 65% (volume fraction) SiCp/Al matrix com-

posite [6]

Fig. 2 a Publications of SiCp/Al composite machining performance

studies sourced from available databases and b distribution of

industrial countries conducting SiCp/Al composite machining inves-

tigations based on available literature
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economical one among all the available methods of Al

MMC production, and it allows fabrication of very large

components. Its advantages lie in simplicity, flexibility, and

applicability to large volume production [14]. In this pro-

cess, the matrix material is superheated above its melting

temperature. The particles are also preheated at approxi-

mately 1 000–1 200 �C to oxidize the surface. The melted

matrix is then stirred at an average stirring speed of

300–400 r/min as the vortex is formed during stirring

[2, 15]. The major problem with stir casting is segregation

or dusting of reinforced particles [13]. The squeeze casting

process combines casting and forging to overcome casting

defects such as pitting, porosity, and segregation of rein-

forcements [16]. Squeeze casting is a nonconventional

process. Solidification of the molten slurry is carried out at

high squeezing pressures, which enhance the microstruc-

ture and mechanical properties [17, 18]. In the fabrication

of Al MMCs, many types of aluminum alloys have been

adopted, e.g., Al6061 [19], AA2124 [20], Al7039 [21],

Al7075 [22], Al A359 [23], Al A356 [24], Al6351 [25],

and Al2124 [26], as matrix materials.

2.2 Properties

The machinability of MMCs differs from conventional

metal materials because of the abrasive reinforcement

element. It is known that SiC particles have some specific

properties, e.g., high melting point (2 730 �C), high mod-

ulus (250 GPa), good thermal stability, good hardness, high

wear and impact resistance, and high chemical resistance

[7]. These excellent properties enhance the characteristics

of Al-SiC composites. Consequently, SiC-related issues

(e.g., fraction and size) are the key factors that are affecting

the properties of SiCp/Al matrix composites. It is believed

that the mechanical properties of Al/SiC composites can be

improved by increasing the volume fraction of SiC parti-

cles in the composites [27]. The yield strength and tensile

strength increase with an increase in the SiC volume

fraction; however, the plasticity [28] and impact toughness

of the composites [29] deteriorate. Moreover, an increase

in particle size reduces the strength but increases the

composite ductility [30]; thus, a finer particle size of SiC

offers a greater compressive strength [31]. Hong et al. [32]

showed the variation in yield strength and ultimate tensile

strength of composites as a function of the volume per-

centage of SiC: the yield strength ranged from 75 MPa (0%

SiC-2014Al) to 210 MPa (10% (volume fraction) SiC-

2014Al) and the ultimate tensile strength ranges from 185

MPa (0%SiC-2014Al) to 308 MPa(10% (volume fraction)

SiC-2014Al). Yan et al. [33] produced Al matrix com-

posites with high-volume fractions (55%–57%) of SiC

particles using a new pressureless infiltration fabrication

technology and described the properties of the SiC/Al

composites as follows: density was 2.94 g/cm3; elastic

modulus was 220 GPa; flexure strength was 405 MPa;

coefficient of thermal expansion (CTE) was 8.0 9 10-6/K;

thermal conductivity (TC) was 235.0 W/(m�K); Poisson’s
ratio was 0.23; and HV hardness was 200 N/mm2. Huang

et al. [34] fabricated 30% (volume fraction) SiC/6061Al

composites using a pressureless sintering technique, and

obtained the following properties: bending strength was

425.6 MPa; TC was 159 W/(m�K); and CTE was 1.25 9

10-5/(20–100 �C). Tailor et al. [7] summarized the prop-

erties of SiCp/Al composites as follows: bending strength

was 350–500 MPa; elastic modulus was 200–300 GPa; and

CTE was (6.5–9.5) 9 10-6/K.

3 Conventional machining of SiCp/Al matrix
composites

3.1 Turning

3.1.1 Tool selection

The majority of SiCp/Al turning investigations were con-

ducted on lathes with a series of tools, such as uncoated

tungsten carbide (WC) tools, polycrystalline diamond

(PCD) tools [35], high-speed steel (HSS) cutting tools [36],

cubic boron nitride (CBN) inserts tools [37, 38], single-

crystal diamond (SCD) tools [39], TiN-coated hard carbide

Fig. 3 a Percentage statistics of studied SiC fractions and b distribu-

tion of machining methods utilized in studies based on available

database
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tools, chemical vapor deposition (CVD) diamond tools, and

multilayer-coated carbide insert tools [40].

PCD cutters are the most commonly used tools. They

are generally preferentially considered when turning high-

volume fraction SiCp/Al composites. This is because these

diamond-based turning tools both increase tool life and

produce acceptable machining surfaces [41]. Durante et al.

[42] insisted that it was possible to use only the PCD

turning tools for improving the cutter service time and

reducing the cutter changing frequency because HSS cut-

ters could be destroyed in several seconds, whereas con-

ventional and coated carbides could only work for a few

minutes. Karabulut and Karako [43] also advised that PCD

cutting tools should be used considering their excellent

mechanical properties, although these tools were generally

not cheap. On the aspect of tool cost, carbide and rhombic

inserts have been regarded as an economical alternative

turning solution compared to PCD or CBN tools. Sahin

[44] reported that multicoated carbide tools with TiN as the

top layer presented a better wear property than those of

other cutting tools when machining SiCp/Al matrix com-

posites. In addition, Errico and Calzavarini [45] found that

the deposition of a thin-film CVD diamond increased the

cutting performance of hard metal substrates by more than

100%. Meanwhile, Andrewes et al. [46] observed a faster

flank wear rate on a CVD diamond insert than on a PCD

insert, but that faster wear rate could be reduced by

securing stronger adhesion between the carbide substrate

and diamond coating.

3.1.2 Tool wear mechanism

The machinability of MMCs differs from that of conven-

tional materials due to the heavy cutting tool wear caused

by abrasive elements [29]. Flank wear is the main type of

wear observed on the tip tool [47]. In terms of tool wear

mechanism, Manna and Bhattacharayya [48] explained the

following: as the SiC particle contacted with the cutting

tool, the atoms from the harder material were likely to

diffuse into the softer matrix during the sliding process,

which increased the hardness and abrasiveness of the

workpiece. In the rapid wear phase and steady wear phase,

diffusion and abrasion caused tool flank wear, respectively.

For the PCD tool, the tool wear that occurs on the cutter

is similar to that observed when machining other materials

and may be interpreted as surface fatigue and a

microfracture process. The wear may be exacerbated by

adhesion between the tool and the workpiece [49], and

vertical grooves are visible on the flank face of the tool

[50]. For the TiN-coated tool, abrasion is the main tool

wear mechanism and there is almost no evidence of

chemical wear; moreover, tool wear occurs on the flank

face and the cutting speed is found to be the most

influential parameter [51]. For the CVD diamond-coated

carbide tool, the tool wear process includes melting of the

workpiece material onto the tool surface as well as alter-

ations of the rake face and cutting edge by the consequent

pullout. Tool failure of smooth coatings occurs by a pro-

cess including work material transfer and welding on the

tool surface as well as regular removal of the built-up layer

and built-up edge (BUE), inducing coating pullout, which

exposes the relatively soft tool substrate to abrasive wear

caused by the hard SiC particles [52]. For the uncoated WC

tool, the flank wear is high due to the formation of BUE

and generation of high cutting forces at low cutting speeds.

In addition, the formation of BUE enlarges the actual rake

angle; thus, it is found that the increment of cutting forces

may increase the cutting tool wear in turn [53]. Manna and

Bhattacharayya [54] proposed that the feed rate was less

sensitive to tool wear compared with the cutting speed

during turning SiCp/Al with an uncoated WC cutter. For

the CBN and diamond-coated cemented carbide cutting

tools, abrasion and adhesion were observed as the pre-

dominant wear mechanisms. Scanning electron microscopy

(SEM) investigation revealed that tool flank wear was the

dominant wear mode. In contrast, machining of an MMC

containing relatively large SiC particles (110 lm) using

CBN cutting tools resulted in fracture of both the cutting

edge and nose [55]. For the SCD tool, microwear, chip-

ping, cleavage, abrasive wear, and chemical wear were the

dominant wear patterns. It was pointed out that the com-

bined effects of abrasive wear of SiC particles and catalysis

of copper in the aluminum matrix had caused severe

graphitization. Figure 4 displays SEM images of a worn

SCD tool used for turning of 15% (volume fraction) SiCp/

2009Al [39].

As can be observed from Fig. 5, the cutting speed, depth

of cut, feed rate, and nose radius are the main factors that

affect tool wear significantly in most of the turning cases

[56]. For instance, the tool wear increases with increasing

cutting speed, depth of cut, and feed rate when turning 5%–

20% (mass fraction) SiC-reinforced MMCs using an HSS

cutting tool [36]. When turning SiCp/Al7075 MMC with

multilayer TiN-coated WC inserts in a dry machining

environment, the most significant parameter affecting tool

flank wear was cutting speed, followed by feed rate and

depth of cut [57].

Based on experiments and modeling of tool deteriora-

tion, it is found that the volume fraction of SiC rein-

forcement strongly influences the tool wear [58]. Higher

percentages of SiC particles lead to higher tool wear. A

higher surface contact rate between the SiC particles and

cutting edge occurs in higher-percentage SiCp/Al matrix

composites [47]. During turning, when the SiC particles

gain higher kinetic energy, they will strike the tool insert

surface, which causes severe wear [56]. Improving cooling
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and lubrication has significant impacts on the flank wear,

adhesive wear, and tool breakage. It was demonstrated that

adequate flushing as well as excellent lubricating and

cooling properties would help to reduce the three-body

abrasion at the boundary zones of the minor and major

flanks [59].

Since tool wear is an important factor that contributes to

the variation in spindle motor current, speed, feed rate, and

depth of cut, on line tool wear state detecting is available.

By analyzing the effects of tool wear and cutting parame-

ters on the current signal, models on the relationship

between the current signals and the cutting parameters

were established with a partial design taken from experi-

mental data and regression analysis. The fuzzy classifica-

tion method was used to categorize the tool wear states to

facilitate defective tool replacement at the appropriate time

[60]. Besides, artificial neural networks (ANNs) and the

coactive neuro-fuzzy inference system are available for

predicting the flank wear [61].

3.1.3 Cutting force, chip formation, and simulation

The resultant cutting force consists of components due to

chip formation, ploughing and particle fracture, and dis-

placement. Merchant’s shear plane analysis, slip-line field

theory, and Griffith’s theory can be adopted for calculating

these force components, respectively [62]. Generally, as

the cutting forces increase with the flank wear of the

turning inserts, the feed and depth forces show a corre-

sponding increase [63]. Manna and Bhattacharayya [54]

conducted a series of experiments and found that the cut-

ting force was smaller at lower cutting speeds, whereas the

feed force was larger at lower cutting speeds than at higher

cutting speeds. Besides, the properties of the SiC particle

reinforcement, such as size and volume fraction, con-

tributed to the change in the cutting forces [64]. Gaitonde

et al. [65] illustrated that a combination of a high cutting

speed with a high feed rate was advantageous for mini-

mizing the specific cutting force. It was demonstrated that

the reinforcement percentage had an increasing effect on

the resultant force when turning SiCp/Al composites [66],

and the cutting force magnitudes were also sensitive to the

size of reinforcement particles [67].

The chips formed from the workpiece material will

indicate the material deformation behavior during

Fig. 4 SEM micrographs of round-edged SCD tool wear after cutting 15% (volume fraction) SiCp/2009Al: a flank face, b rake face, c flank face

on the tool nose and d high magnification of the rectangle in c [39]

Fig. 5 Effects of a cutting speed and feed rate and b cutting speed

and depth of cut on flank wear [56]
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machining [68]. Figure 6 shows that chip voids initiate

around the particles along the inner surface first, and then

some SiC particles become fractured [69]. In the turning

process, the tool rake angle has a great influence on the

chip formation. Normally, the material of the workpiece is

removed under the tensile stress supplied by the cutting

tool with a positive rake angle. On the contrary, the

material is removed under the compressive stress supplied

by the cutting tool with a negative rake angle. Therefore, it

can be deduced that the plastic deformation of chips occurs

more easily when using a tool with a negative rake angle

than a tool with a positive rake angle [70].

During turning of SiCp/Al matrix composites, the pri-

mary chip forming mechanism should be the initiation of

cracks from the outer free surface of the chip due to the

high shear stress [71]. The particles can interfere with

matrix plastic deformation and retard the growth of cracks

formed in the chip [72]; thus, the size and volume fraction

of reinforcement significantly influence the chip formation

mechanism. In the case of finer reinforcement composites,

the chip segments are longer and gross fracture occurs at

the outer surface of the chips only. By contrast, in coarser

reinforcement composites, complete gross fracture causes

the formation of smaller chip segments [73]. Because the

volume fraction of SiC increases the chip disposability, the

chip thickness ratio and shear angle increase [53], and the

sizes of chips are decreased during dry machining opera-

tion [36]. Ge et al. [74] discovered that a saw-toothed chip

was formed during ultraprecision turning of SiCp/Al

composites and the chip-formation mechanisms were

dynamic microcrack behavior and strain concentration.

Generally, cutting force and chip formation in the

turning processes are complex. Simulation models have

been developed for a better understanding of these pro-

cesses. For example, Kishawy et al. [75] reported an

energy-based analytical force model for orthogonal cutting

of MMCs. Dandekar and Shin [76] proposed a multistep

three-dimensional (3D) finite element model using com-

mercial finite element packages to predict the subsurface

damage after machining of particle-reinforced MMCs. The

particles and matrix were modeled as continuum elements

with isotropic properties separated by a layer of cohesive

zone elements representing the interfacial layer to simulate

the extent of particle-matrix debonding and subsequent

subsurface damage. A random particle dispersion algo-

rithm was applied for the random distribution of the par-

ticles in the composite. Duan et al. [77] also simulated the

chip formation and cutting force in SiCp/Al composite

machining by developing a three-phase friction model that

considered the influence of matrix adhesion, two-body

abrasion, and three-body rolling. The schematic of the tool-

chip interface in SiCp/Al composites machining is depicted

in Fig. 7. It was found that the change in the tool-chip

interface friction coefficient with the particle volume

fraction and particle size was reasonable. The chip root

micrographs obtained from the experiments showed that

two-body sliding, three-body rolling, and matrix sticking

were the main contact forms that determined the tool-chip

interface friction in SiCp/Al composite machining. As

exhibited in Fig. 8, Wu et al. [78] developed a

microstructure-based model for investigating the mecha-

nisms of chip formation in the machining of particulate-

reinforced MMCs. The morphology and distribution of the

particles, debonding of the particle-matrix interface, and

fracture of particles and the matrix were comprehensively

integrated into the model. Because of the high strain and

strain rate throughout the cutting process, the Johnson-

Cook (J-C) constitutive model is generally utilized to

describe the properties of matrix materials in simulations

[79–82]. The J-C equation is based on experimentally

determined flow stresses and is a function of strain, tem-

perature, and strain rate in separate multiplicative terms

[83]. It is given by

Fig. 6 Surface of the SiCp/Al chip a voids formed around the SiC reinforcements and b fractured SiC particles [69]
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r ¼ Aþ Benð Þ 1þ C ln
_e
e0

� �� �
1� T � Tr

Tm � Tr

� �m� �
;

where r is the flow stress, r the plastic strain, _e the strain

rate, e0 the reference plastic rate, T and Tm the current

temperature and material melting temperature, respec-

tively, Tr the room temperature, A, B, C, n, and m the

material constants that can be obtained using dynamic

Hopkinson bar tensile tests. In some conditions, e.g., if the

strain exceeds a certain value (0.3) or under a high strain

rate condition (higher than 103/s), a modified J-C consti-

tutive model with a correction of strain and strain rate

hardening is used for the simulation of turning of particle-

reinforced MMCs [78]. A detailed summary of machining

models for composite materials can be found in Ref. [84].

3.1.4 Surface integrity and machining efficiency

With turning, the machined surfaces contain many defects

of pits, voids, microcracks, grooves, protuberances, matrix

tearing, and so on [85]. In investigations on the machining

surface roughness (SR), Ra (the arithmetic mean rough-

ness), Rt (the maximum peak-to-valley height of rough-

ness) [86], and Rz (the maximum peak-to-valley height

within sampling length) [87] are generally considered.

Ding et al. [88] studied the machining performance of

SiCp/Al composites with various types of polycrystalline

CBN and PCD tools; they explained that the adhesion

property of the tool and the work material had a major

influence on the surface finish. Sharma [89] studied the

interaction effects of various factors and reported that an

increase in nose radius improved the SR, while the feed

rate has a more severe effect on the SR. Davim [90] pro-

posed that the cutting velocity, cutting time, and feed

parameters had statistical and physical significance on the

SR of the workpiece. Palanikumar and Karthikeyan [91]

insisted that feed rate was the main factor that had the

greatest influence on the SR, followed by the cutting speed

and SiC volume fraction. Muthukrishnan and Davim [92]

also supported that the feed rate has the highest statistical

and physical influences on the SR, whereas Manna and

Bhattacharayya [48] considered that the cutting speed, feed

rate, and depth of cut had equal influences on the Ra and Rt

values. Aurich et al. [93] suggested that high cutting speeds

and feed rates and moderate depths of cut needed to be

used to decrease the thermal load of the workpiece.

Muthukrishnan et al. [35] found that the surface finish was

superior at lower feed rates and higher cutting speeds for

Fig. 7 Schematic of the tool-chip interface in SiCp/Al composite machining a the tool-chip contact, b an enlarged view of matrix sticking, two-

body sliding, and three-body rolling, c an enlarged view of the tool-chip contact face [77]
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PCD inserts. When the cutting speed was 400 m/min, a

steady low Ra value could be obtained over the entire tool

life, which made high-speed finishing of MMCs possible

[94]. Ge et al. [95] reported that Ra of 20–30 nm could be

attained by using single-point diamond tools (SPDT) or

PCD tools; moreover, the surface obtained by SPDT was

smoother and the number of crushed or pulled out SiC

particles was fewer. Dabade et al. [96] observed the lowest

SR (Ra = 0.13 um) on the machined surfaces of higher-

fraction reinforced MMCs (Al/SiC/30p), and the maximum

SR (Ra = 2.47 lm) was found on the machined surfaces of

Al/SiC/20p composites. It was reported that the SR of the

cutting surface decreased as the volume fraction of SiC

decreased [97], and the change in size was more influential

than the volume fraction [96]. Wang et al. [98] conducted

precision turning experiments to study the influence of

particle size on the surface quality and proved that the SR

(peak-valley value) was close to the particle radius. The

performance of cutting tool materials has been evaluated in

terms of surface quality from the best to the worst, which

are PCD, CBN, and WC (for 10%(mass fraction) SiCp/Al)

[99]. For example, while turning Al2124-SiC (45%(mass

fraction)) MMCs, the PCD tool performed better than the

CBN tool with lower flank wear and higher surface finish

quality [100]. It was proposed that damage to the machined

surface was related to the fracture and pluck out of SiC

reinforcement by cutting tools [101]; specifically, the par-

ticles beneath the machined surface were fractured as

subsurface damages because of squeezing by the flank face

of the cutting edge [78]. Hence, the treated tool produces a

Fig. 8 Simulations of distribution of principal stress under a 50 lm depth of cut [78]
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better-machined surface of MMC material than the

untreated tool [102], and lubrication will be helpful. In

particular, kerosene with graphite powder yields better

results on SR and surface hardness compared with other

lubricants such as soluble oil, mineral oil, and pure kero-

sene [103]. In general, the peak residual stresses and

residual stresses at most depths beneath the machined

surface are higher for heat-treated samples than those for

hot-rolled samples [104]. Concerning investigations con-

ducted by Aurich et al. [105], the use of high feed rates

decreased the residual stress in the surface of the workpiece

in comparison to using low feed rates. However, the sur-

face quality considerably deteriorated by using high feed

rates. As depicted in Fig. 9, Sharma [89] studied the

interaction effects of various factors and reported that an

increase in nose radius improved the SR while the feed rate

had a more severe effect on the SR, which increased with

the increase in feed rate.

Machining efficiency is an important factor in the

machining operation of SiCp/Al composites. The opera-

tional cost of the machine is directly proportional to the

square of the material removal rate (MRR) [56]. MRR is

determined by the rate of change in volume [106]. In the

turning process, the value of MRR (rMRR) is calculated by

the following formula: rMRR = V 9 F 9 D. Here, V is the

cutting speed (m/min), F the feed rate (mm/r), and D the

depth of cut (mm). Theoretically, increasing any of V, F, or

D will significantly improve the machining efficiency.

Fig. 9 Interaction effects of various factors on surface roughness (S: cutting speed, D: depth of cut, F: feed rate, and R: nose radius) a cutting

speed versus depth of cut, b cutting speed versus nose radius, c depth of cut versus feed rate, and d feed rate versus nose radius [89]
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However, the change in cutting parameters will produce

non-negligible influences on other aspects, e.g., tool life,

cutting force, energy consumption, and surface quality.

Thus, it is necessary to optimize the machining parameters

to achieve higher efficiency without causing severe tool

wear, large energy consumption, etc. Generally, optimiza-

tion methods, e.g., ANOVA and gray relational analysis

[56, 107, 108], genetic algorithms (GAs) [109], Taguchi’s

optimization methodology [110–114], and response surface

methodology (RSM) [115–118], have been adopted.

Table 1 lists various recommended turning parameters for

industry consideration based on optimization studies from

Refs. [119–124].

3.2 Milling

There are several types of milling methods, e.g., end mil-

ling and face milling. From an overview of the literature, it

can be found that most investigations of SiCp/Al composite

machining are focused on end milling.

3.2.1 Tool wear

Uncoated cemented carbide inserts, nano TiAlN coated

tools, and carbide-coated cutting tools can be adopted for

the milling of SiCp/Al composites. Additionally, some

ultrahard materials, such as CBN and PCD, are employed

to avoid rapid tool wear [125]. Images of a milling cutter

with an identical tool geometry are exhibited in Fig. 10

[126].

Shen et al. [127] demonstrated that the uncoated WC-Co

milling tool sufferred the severest wear in its circumfer-

ential cutting edge, whereas the wear of the diamond-like

carbon (DLC)-coated milling tool was slightly lower.

Comparatively, the CVD diamond-coated milling tool

exhibits a much stronger wear resistance. The wear on its

circumferential cutting edge is less than 0.07 mm at the end

of milling tests, which is only half of that of the DLC-

coated milling tool. Huang et al. [128] conducted high-

speed milling experiments of SiCp/Al composites with 20%

(volume fraction) at dry and wet machining conditions. The

results showed that the main tool wear was abrasion on the

flank face, and the TiC-based cermet tool was not suit-

able for machining SiCp/Al composites with higher volume

fractions and larger particles due to the heavy abrasive

nature of the reinforcement. The diamond particle size has

a great influence on the wear resistance of PCD tools. The

larger the size of the diamond particle, the worse the wear

resistance. However, when the tool wear goes into a

stable wear state, the wear rate of PCD tools with different

particle sizes is almost the same [129]. Wang et al. [130]

showed that the wear pattern of PCD tools was the flank

wear caused by abrasion of the SiC particles at relatively

low cutting speeds. Since graphitization of PCD tools does

not occur at low cutting temperatures, the wear mechanism

of PCD tools will be abrasive and adhesive wear. Huang

and Zhou [131] also reported that the flank wear was the

dominant wear mode for the TiN-coated tool, cermet tool,

and cemented carbide tool. The wear resistance was almost

the same for the three different tool materials at both low

and high speeds. In addition, the milling speed was the

most influential machining parameter on tool wear. With

increasing milling speed, the tool wear increased. The feed

rate and depth of cut have slight influences on the tool

wear. As shown in Fig. 11, Ge et al. [132] reported the tool

flank wear under different working times during high-speed

milling of a SiC/2009Al composite using a PCD tool; the

Table 1 Recommended turning parameters for industry

Tool Matrix SiC

fraction

Parameter Remark

PCD

[119]

Al 356 5% (mass

fraction)

Spindle speed

1200 r/min,

feed rate 0.25

mm/r, depth of

cut 1.0 mm

Surface

roughness

2.96 lm,

rMRR 37.79

cm3/min

HSS

[120]

Al 7075 10%

(mass

fraction)

Feed rate range

of 0.4–0.8 mm/

r, depth of cut

range

0.08–0.16 mm,

cutting speed

range of

60–100 m/min

Cutting forces

are

independent

of cutting

speed

Carbide

insert

[121]

Al 7075 10%

(mass

fraction)

Cutting speed

range of

180–220

m/min, feed

rate range of

0.1–0.3 mm/r,

and depth of

cut range of

0.5–1.5 mm

Optimum

surface

oughness

PCD

[122]

Al 7075 10%

(mass

fraction)

Low feed rate

(0.05 mm/r)

and high

cutting speed

(170 m/min)

The best

surface

finish

Carbide

insert

[123]

Al 7075 15%

(mass

fraction)

Cutting speed 90

m/min, feed

rate 0.15 mm/r,

depth of cut

0.20 mm, nose

radius 0.42

mm

The maximum

value of tool

life (6.6

min)

K20

series

[124]

Al 6025 20%

(volume

fraction)

Narrow region

around 150 �C
and 150 m/min

as the optimum

domain for

machining

Tool: a thick

Al2O3 layer

on top of

Ti(C,N)

layer
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available tool life could exceed 240 min when a 0.1 mm

tool wear criterion was chosen. It was reported that the

wear mechanism of diamond-coated micromills was

adhesion, abrasion, oxidization, chipping, and tipping

[133], and the volume fraction and size of SiC particles

present in the aluminum alloy matrix had significant effects

on the milling characteristics [134, 135].

3.2.2 Cutting force

The cutting force and its impact factors in different milling

investigations are generally not the same; however, the

machining parameters and SiC particles play a key role.

Jayakumar et al. [136] revealed that the depth of cut and

size of SiC were the key impact factors of the cutting force.

An increase in the volume fraction of SiC reinforcement

over the matrix results in a higher tool-work interface

temperature and requires a higher cutting force [137].

Vallavi et al. [138] observed that the cutting speed had

negative effects on the cutting force while the axial depth

of cut and the percentage of SiC showed positive effects on

the cutting force. Huang et al. [139] also detected that the

milling forces decreased with an increase in the milling

speed, or increased with an increase in the feed rate and

depth of milling. The influence of milling depth on the

milling forces in the x and y directions is the most signif-

icant, while the influence of the feed rate on the z milling

forces is the most significant. Babu et al. [140] demon-

strated that the cutting force components were more sen-

sitive in the high-speed and full immersion condition, and

it was witnessed that the cutting force obtained additional

undulations by both the unstable chip formation of com-

posite material and randomly distributed reinforcement

particles [141].

Ge et al. [142] performed high-speed milling tests on

SiCp/2009Al composites by using PCD tools in the speed

range of 600–1 200 m/min. The results showed that the

peak value of the cutting force (in the tool radial direction)

was in the range of 700–1 450 N. The maximum amplitude

of the cutting force vibration in the tool radial direction can

reach 700 N. Figure 12 illustrates the cutting forces and

torque in high-speed milling of SiCp/Al composites with

Fig. 10 Milling cutter geometry: a tool faces and b cutting corner [126]

Fig. 11 PCD tool life comparison under different milling conditions [132]
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small particles and high-volume fraction by adopting PCD

cutters with different grain sizes [143]. The cutting forces

and torque of PCD tools of larger diamond grain sizes are

less than those of smaller diamond grain sizes.

3.2.3 Surface integrity, machining efficiency,

and optimization

The SiC reinforcement removal mode plays a decisive role

in the formation of the machined workpiece surface [144].

Various defects concerning surface topography such as

ploughed furrow, pits, and matrix tearing have been found

under different parameters, which are mainly the effect of

SiC particles pulled out, fractured, or crushed [145]. Fig-

ure 13 depicts the machined surface morphology of

Al6063/SiCp/65p composites. The machined surfaces are

characterized by shallow pits caused by fractured or cru-

shed SiC particulates, swelling formed by pressed-in SiC

particulates, large cavities formed from pulled-out SiC

particulates, and high-frequency scratches of SiC

particulates.

The reinforcement enhances the machinability in terms

of both SR and lower tendency to clog the cutting tool

compared to a non-reinforced Al alloy using TiAlN-coated

carbide end mill cutters [146]. Zhang et al. [147] reported

that the SR of aluminum/SiC composites was smaller than

that of the aluminum metal during an end milling experi-

ment, which was due to the improvement in mechanical

properties of the aluminum/SiC composite resulting from

the addition of SiC particles. In the precision milling of the

composites, the generation of the machined surface is a

balance between the size effect of the Al matrix and the

removal methods of SiC particles. When the feed per tooth

is smaller than the minimum chip thickness of Al, the

coating effect is dominant; when the feed per tooth is larger

than the maximal advised value calculated by the method,

the particle cracks dominate [148]. The SR mainly depends

on the feed rate followed by the spindle speed, whereas the

depth of cut has the least influence [149]. Thus, high cut-

ting speeds, low feed rates, and low depths of cut are

recommended for better surface finish [150]. Obtaining a

very smooth surface for a high-volume fraction and large

Fig. 12 Cutting force versus cutting distance a Fx, b Fy, c Fz and d torque [143]
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SiC particle workpiece is very difficult; however, a mirror-

like surface with an SR (Ra) of approximately 0.1 lm can

still be achieved by using diamond precision milling with

small parameters in the range of a few micrometers [125].

Wang et al. [151] reported that the milled SR of 65%

(volume fraction) SiCp/Al composites decreases gradually

when the milling speed increases from 100 m/min to 250

m/min, and then the values remain stable. It has been

demonstrated that using a CO2 cryogenic coolant can

improve the surface quality by reducing the SR value (in

face milling) [152]. Figure 14 indicates the influence of

SiC fraction on the SR [153]. When the machined SR

enters into a relatively stable state, the SR of machined

materials with a volume fraction of 56% is the highest, and

the value is the lowest when the volume fraction of SiC

particles is 15%. When the volume fractions are 25% and

30%, the values of the machined SR have little difference

between each other. In general, the lower the volume

fraction of SiC particles, the smaller the machined SR.

In terms of residual stress on the machined surface, the

axial depth of cut has the highest influence, followed by the

milling speed and feed rate, and the residual stress mea-

sured in the feed direction indicated that the conditions of

the machined Al6063 surface were all tensile, while the

conditions of Al/SiC/65p were compressive [154]. During

milling, the matrix material was removed in a plastic way

Fig. 13 SEM micrographs of the Al6063/SiCp/65p machined surface a macromachined morphology, b scratch and microcrack, c cavity formed

by SiC cracking, d shallow pit caused by SiC scratch, e cavity formed by pulled-out SiC particulate and f swelling caused by pressed-in SiC

particulate [6]

Fig. 14 Relation curves between cutting distance and machined

surface roughness (using PCD tools) [153]
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and presented a smooth machined surface. Most of the SiC

reinforcements presented partial ductile removal with

microfractures and cracks on the machined surface [125].

The material removal and tool wear mechanism in the

milling of SiCp/Al composites are complex. Investigations

aimed at achieving a higher MRR, lower tool wear, and

higher surface quality have been conducted; thus, RSM

[155–157], gray-fuzzy logic algorithm [158], and ANOVA

[159] have been adopted. Based on the literature, the rec-

ommended milling parameters for industry application are

listed in Table 2 [43, 135, 136, 160, 161].

3.3 Drilling

Solid carbide drills, TiN-coated HSS twist drills, PCD-

coated drills, and CVD diamond-coated carbide tools are

widely used for the drilling process. Tosun and Muratoglu

[162] advised that solid carbide drills were the most suit-

able tools for drilling of 17% (volume fraction) SiCp/Al

composites, however, from an estimate of economic fac-

tors, the TiN-coated HSS drills were cheaper than the solid

carbide tools. The best performance of the TiN-coated HSS

twist drill was obtained with a lower cutting point, higher

feed rate, and higher cutting speed [163]. Xiang et al. [41]

suggested that when drilling high-volume fraction (e.g.,

65%(volume fraction)) SiCp/Al composites, the CVD dia-

mond-coated carbide tool should be preferred, owing to its

stable cutting force, less tool wear, and its ability to pro-

duce acceptable machining quality. Monaghan and O’reilly

[164] compared a series of drilling tests on a 25% (volume

fraction) SiC/Al composite with different drilling tools

(coated and uncoated HSS, carbide and PCD-tipped drills,

and solid-carbide drills). The results indicated that the

hardness of the tool material had a significant influence on

the machining performance, and the presence of a ceramic

coating on an HSS drill did not improve its performance

appreciably compared to standard uncoated tools.

The height of burrs produced during drilling was found

to be greater with softer materials [165]. Moreover, burr

dimensions were smaller at a lower feed rate, higher point

angle, and higher concentration of reinforcements [166].

The experiment conducted by Babu et al. [167] showed

that the point angle had a significant influence on the

drilling performance. As the point angles of HSS and TiN-

coated HSS drills increase, the damage zone increases.

However, with increasing point angles of solid carbide

drills, the damage zone decreases [168]. The temperature

during the cutting process plays a major role in the tool

wear evolution and wear mechanism [169, 170]. The heat

generation during machining is divided into plastic-defor-

mation heat and friction-induced heat. The converted heat

rate by plastic deformation leads to workpiece temperature

variation in material forming and machining. Figure 15

shows the schematic of heat partitioning in the chip for-

mation process.

Huang et al. [171] reported that the thrust force varied

linearly with the feed rate, while the cutting speed had no

significant effect on the thrust force when drilling SiCp/Al

composites with high-volume fractions (55%–57% SiC)

and large particle sizes. Hu et al. [172] developed a 3D

finite element model for simulating the 3 mm diameter

peck drilling behavior of SiCp/Al composites by using

ABAQUS/Explicit. In the simulation, a J-C model was

created for the SiCp/Al composites. A comparison of the

simulation and experimental chip formation is shown in

Fig. 16.

As displayed in Fig. 17, many uniform and close-packed

abrasion marks on the chisel edge and flank face can be

Table 2 Recommended parameters for the milling of SiCp/Al composites

Tool Matrix SiC

(volume

fraction)

Parameter Remark

End mill cutter (/ 16 mm) with 2

uncoated cemented carbide inserts

[136]

A356

aluminium

alloy

10% Cutting speed 200 m/min, feed rate 0.1 mm/min,

depth of cut 0.2 mm

The minimal surface

roughness and

cutting forces

Three different cutting tools

(uncoated, multi-layered and nano

TiAlN coated) [135]

123 L

aluminium

alloy

10% SiC

under

32 lm

Uncoated tool: cutting speed 60 m/min, feed rate 0.04

mm/r; multi-layered tool: cutting speed 78 m/min,

feed rate 0.12 mm/r

Multi-layered tool

0.302 lm

Carbide insert with a 0.8 mm

uncoated tool nose radius [160]

Al7075 alloy 40% Cutting speed 170 m/min, depth of cut 0.8 mm and a

feed per tooth 0.08 mm/tooth.

Best surface quality

Carbide coated cutting tool inserts

(AXMT 0903 PER-EML TT8020)

[43]

Al7075 alloy 5%, 10%,

15%

Spindle speed 1000 r/min, feed 0.03 mm/r, depth of

cut 1 mm and 5% SiC by weight

The best

combination

PCD blade with carbide substrate

[161]

Al6063

aluminum

65% Cutting speed 300 m/min with a tool refreshment Surface Ra less than

0.4 lm
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observed when drilling SiCp/Al composites with high-

volume fractions and large SiC particle sizes using elec-

troplated diamond drills [173]. It can be seen that the wear

of the embedded diamond grit on the drill includes abrasive

wear (see Fig. 17a), pullout (see Fig. 17b), cracks initiated

around the particle (see Fig. 17c), and fracture (see

Fig. 17d).

Tosun [174] observed that the most influential parame-

ters on the workpiece SR were the drill type and feed rate,

respectively. The spindle speed, drill point angle, and heat

treatment have been determined to be insignificant factors

on the SR. Barnes and Pashby [175] provided strong evi-

dence that through-tool cooling led to a significant

improvement in performance in terms of tool wear, cutting

force, surface finish, and height of burrs produced. There is

another drilling process called friction drilling, which has

been adopted for SiCp/Al matrix composites; it is reported

that the hole quality in terms of roundness is affected by the

spindle speed, feed rate, and percentage of SiC in the

workpiece [176, 177]. Currently, optimization methods are

available based on gray relational analysis [178], fuzzy

logic and GAs [179, 180], Taguchi’s method [181], etc.

The recommended drilling parameters for industry con-

sideration are provided in Table 3

[168, 174, 178, 179, 181–183].

3.4 Grinding

Grinding can be performed as surface, cylindrical, and

ductile-regime grinding. Among them, cylindrical grinding

has attracted most of the research interests in the grinding

of SiCp/Al matrix composites.

3.4.1 Surface grinding

The material removal of SiC particles is primarily due to

the failure of the interface between the reinforcement and

matrix, and results from microcracks along the interface

and many fractures or crushed SiC particles on the ground

surface [184]. The chips can be divided into Al-matrix

chips, SiC particle chips, and Al-SiC mixed chips, when

diamond grinding SiCp/Al composites with higher volume

fraction and larger particles [185]. The grindability is

influenced by both the type of grinding wheel abrasive and

the type of reinforcement of workpiece material [186].

Zhang et al. [187] compared the PCD compact (PDC)

whisker with the CVD diamond whisker, and found that the

PDC wheel had better edge evenness, which led to good

machining quality. Xu et al. [188] suggested the potential

of using SiC wheels for rough grinding of SiCp/Al com-

posites in consideration of their economic advantages.

Zhong [189] reported that there was almost no subsurface

damage except for rare cracked particles when fine grind-

ing 10% (volume fraction) SiCp/Al composites with a

diamond wheel. Huang et al. [129] revealed that the normal

grinding forces of SiCp/Al composites were always higher

than the tangential grinding forces. With the increase in the

grinding depth and table speed, both the normal and

Fig. 15 Schematic of heat partitioning in the chip formation process

[170]

Fig. 16 Chip formation in simulation and experiment: a formation of two chip segments, b segment B in simulation, c segment B in experiment

[172]
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tangential grinding forces of SiCp/Al composites increased

evidently. Due to the high hardness of SiCp/Al composites,

the thrust component of the grinding force showed a

strongly increasing trend with wheel degradation [190].

Furthermore, with an increase in the grinding depth, both

the normal grinding force and tangential grinding force

increased evidently [191].

Among the different grinding wheels, the diamond

wheel exhibits the lowest normal force followed by the

CBN wheel. Surface damages such as debonding of rein-

forcement from the metal matrix cracked reinforcement,

particle breakage, and cracks at the surface are the reason

for the increased forces while grinding using the SiC wheel

[192]. Considering the plastic deformation force of the

matrix material, the friction force between grits and

workpiece material, and the removal force of SiC particles,

a grinding force model suitable for grinding holes of SiCp/

Al composites with high-volume fractions was established

by Lu et al. [193]. The effect of the grinding parameters on

the grinding force, as shown in Fig. 18, was investigated by

Xu et al. [188]. The results indicated that the grinding

depth had a more significant effect on the grinding force

than the feed speed; with increasing grinding depth and

table feed speed, the grinding forces for both the tangential

and normal components increased, and the increasing trend

was more notable with a higher grinding depth.

The grinding temperature increases with an increase in

the wheel velocity, workpiece velocity, feed rate, and depth

of cut. High values of the grinding parameters result in

high grinding temperatures due to the increase in the

energy required to grind a unit volume of material [194].

When the grinding temperature exceeds 450 �C, a black

color appears on the ground surface due to the oxidation

reaction, and the residual compressive stress of the burned

surface layer is very high [195]. By adopting a triangular

heat source model, the temperature distribution in the

workpiece can be accurately and efficiently calculated

during the precision grinding of SiCp/Al composites [196].

Du et al. [197] established a microgrinding model of SiCp/

Al composites, which took into account the SiC-reinforced

particle irregularity, as shown in Fig. 19, and the model

was used to analyze the particle removal and surface for-

mation processes in different machining conditions.

In the grinding of SiCp/Al composites, a common

problem is the formation of voids and delamination on the

machined surface, which is due to pulled-out reinforced

particles and aluminum matrix adhesion on the machined

surface. The surface feature of the workpiece varies with

different grinding parameters. With a larger feeding

Fig. 17 SEM image of worn diamond grits a abrasive wear, b pullout, c crack initiation and d fracture [173]
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Table 3 Recommended drilling parameters for SiCp/Al composites

Drill Matrix Fraction Parameter Remark

8 mm-KISTLER

[178]

Al6063 10% Spindle speed 560 r/min, feed 0.05 mm/r, point

angle 90�
Torque and SR were considered as quality

targets

5 mm-solid

carbide [174]

Al 2124 17%(volume

fraction)

Feed rate 0.16 mm/r, spindle speed 260 r/min,

drill point angle 130�
The minimum surface roughness obtained

12 mm-HSS [181] Al6063 15% Cutting speed of 150.72 m/min, feed rate of

0.05 mm/r

Cutting environment water, soluble oil

5 mm-solid

carbide [168]

Al 2124 17%(volume

fraction)

Point angles 130, spindle speed 1 330 r/min,

feed rate 0.16 mm/r

Carbide tool better that HSS and TiN coated

HSS

10 mm-solid

carbide [179]

LM25 15%(volume

fraction)

Spindle speed 921.0 r/min, feed rate 0.258 mm/r Metal emoval rate 5 579 mm3 /min, surface

roughness 8.50 lm

3 mm-HSS [182] Al123 10%(mass

fraction)

Cutting speed 20 m/min, feed rate 0.04 mm/r Cryogenic treatment has positive effects on

Ra

5 mm-PCD [183] A356/ 20% Cutting speed 50 m/s, feed 0.05 mm/r PCD tool is perfectly compatible with

cutting conditions

Fig. 18 Typical variation in grinding force with a grinding depth and b feed velocity [188]
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velocity and grinding depth, more serious accumulation

and adhesion are found [198]. Among many factors, a clear

positive influence of the volume content of the hard phase

on the surface finish is observed. Qualitative surface

damage through particle fracture pullout appears to be

common on most of the finish machined surfaces [199].

Zhu et al. [200] established a theoretical SR model of SiCp/

Al composite grinding based on a combination of the

theoretical SR model of aluminum alloy and SiC, as shown

in Fig. 20. The exponential composition function proved to

be the most suitable, and the coefficients of the function

were fitted by the experimental SR.

Pai et al. [201] claimed that the SR improved with an

increase in SiC volume percentage and a decrease in depth

of cut. This is because an increase in the volume percent-

age of SiC will increase the hardness of the specimen,

which decreases ploughing of the wheel during grinding of

a 35% (volume percentage) SiC/Al matrix composite.

Hung et al. [202] insisted that a coarse-grit diamond wheel

was appropriate for rough grinding, whereas a fine-grit

diamond wheel was suitable for fine grinding to achieve the

best MMC surface integrity. Nandakumar et al. [203]

obtained the best performance by using cashew nut shell oil

and nano TiO2-based minimum quantity lubrication

(MQL), because the lubricant of an MQL system pene-

trated the workpiece and the wheel interface contact zone.

Rough grinding with a SiC wheel followed by fine grinding

with a fine-grit diamond wheel is recommended for SiC/Al

MMCs [189].

3.4.2 Mill grinding, cylindrical grinding, and ductile-

regime grinding

The mill grinding uses a grinding head (sintering or plat-

ing) that replaces the milling tool to remove the workpiece

material with computer numerical control (CNC) milling

Fig. 19 Machining surface simulation of SiCp/Al composites at different depths of cut [197]

Fig. 20 Predicted and experimental surface roughness [200]
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machines. This process has integrated the characteristics

embodied in a similar machining route/path as milling and

multi-edge continuous cutting as grinding. The cut depth of

mill grinding is generally larger to achieve a higher MRR

[204]. There are four typical chip shapes, i.e., curved chip,

huddled chip, schistose chip, and strip chip, among which,

the curved and schistose chips are dominant. The chips

generated in mill grinding of SiCp/Al composites are

irregular and uneven under the same machining conditions.

During the chip forming, SiC particles can greatly inhibit

the deformation of aluminum matrix, and the different

contact positions between the SiC particles and diamond

grit cause the SiC particles to be fractured, pulled out, and/

or pulled into the surface of the chip [205]. The particle

fracture and debonding force component in the mill

grinding of SiCp/Al composites can be considered by

developing a new force prediction model [206]. Yao et al.

[207] recommended a resin-based diamond grinding wheel

for 45% (volume fraction) SiCp/Al composites to achieve

the best SR, whereas Li et al. [208] suggested HSS with a

super-hard abrasive layer (diamond abrasive and binding

agent) to increase the MRR. It is believed that appropri-

ately increasing the feed rate and decreasing the mill-

grinding depth can obtain less SR [209]. Based on opti-

mizations, the following parameters are recommended: for

SiC/LM25Al (4% (volume fraction)) composites, wheel

velocity of 43.9 m/s and workpiece velocity of 26.7 m/min

with a feed of 0.056 m/min and depth of cut of 9.1 lm
[210]; for 45%(volume fraction) SiCp/Al composites,

wheel speed of 11.77 m/s, feed rate of 100 mm/min, and

depth of cut of 0.8 mm [211].

Regarding cylindrical grinding, Thiagarajan et al. [212]

suggested cylindrical grinding of 4% (volume fraction)

SiCp/Al using a 60 grit Al2O3 wheel at a cutting velocity of

grinding wheel of 2639 m/min, cutting velocity of work-

piece of 26.72 m/min, feed rate of 0.06 m/min, and depth of

cut of 10 lm. The approach for the cylindrical grinding of

Al/SiC composites can be extended with super-abrasive

grinding wheels such as diamond and CBN.

For ductile-regime grinding, Huang et al. [213] revealed

that the critical grinding depth of ductile-regime machining

of SiCp/Al composites decreased with increasing volume

fraction of SiC particles due to the decrease in the sup-

porting function of the Al alloy matrix.

4 Nonconventional machining of SiCp/Al matrix
composites

4.1 EDM

EDM is a common nonconventional machining method,

which has been widely used in the aerospace, mold, and

automobile industries. During machining, a discharge

channel is created, where the temperature reaches

approximately 12 000 �C, removing material by evapora-

tion and melting from both the electrode and workpiece

Fig. 21 EDM of SiC/Al MMC a crater formation and b erosion and pitting on the machined surface [222]

Fig. 22 SEM image of the hole section processed using (left) a

cylinder electrode and (right) a tube electrode [224]
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[214]. The MRR and SR are regarded as two indicators of

the EDM process, which can evaluate the time of com-

pleting the material volume removal and the quality of

finished surface, respectively [215]. Additionally, the tool

wear ratio (TWR) is also very important for EDM.

The percentage and size of the SiC in SiC/Al MMCs

generally have a negative influence on machinability.

Karthikeyan et al. [216] revealed that an increase in the

volume fraction of SiC decreased the MRR and increased

the TWR as well as SR when performing EDM of 6%–20%

(volume fraction) SiC/Al composites. Dev et al. [217]

reported that an increase in weight percentage of SiC, as

well as particle size, had resulted in a decrease in MRR and

an increase in TWR and SR. Besides the SiC particles,

electrical parameters are the key factors that affect MRR,

TWR, and SR. Singh et al. [218] machined an A6061/10%

SiC composite and found that with an increase in pulse on

time, the MRR, TWR, and SR increase, and the SR

increases with an increase in gap voltage. Seo et al. [219]

conducted experiments on 15%–35%(volume fraction)

SiCp/Al composites and revealed that the MRR increased

with increasing product of peak current and pulse on time

Table 4 Recommended parameters for the EDM of SiCp/Al composites

Tool Matrix Fraction Parameter Remark

Electrolytic copper

electrode of 10 mm

diameter [236]

Al 7075 0.5% SiC

(mass

fraction)

Voltage 47.34 V, pulse current 6 A, pulse

on time 8 ls, Pulse on time 9.79 ls
MRR 1.196 g/min

TWR 0.001 575 g/min

Ra 10.648 lm

Bundled electrode (/
1.2 mm) [237]

Al 6061 5%

SiC(volume

fraction)

Current 13 A, pulse on time 700 ls, pulse
on time 50 ls, flushing pressure 0.040

MPa

Die-sinking EDM

Brass electrode of /
2.7 mm [238]

Components

(Al-92.7%, Si-

7.0%, Mg-

0.3%)

10% SiC

(volume

fraction)

Current 15 A, pulse on time 1 ms, flushing

pressure 0.014 MPa

Maximizing MRR and for

minimizing TWR

Copper rod with an

array of 2 mm holes

(multi-hole) [239]

6061 Al 15% SiC

(volume

fraction)

Electrode polarity negative, current 4 A,

pulse on time 400 ls, pulse on time

10 ls, dielectic pressure 0.05 MPa

Die sinking EDM TWR was 9 mg/

min and Ra was 4.78 lm

Brass tool of 15 mm

diameter and 60 mm

length [240]

Fabricated by

stir-casting

process

20% SiC Current 5 A, pulse on time 100 ls, Duty
cycle 70%, gap voltage 40 V

Die sinking EDM with positive

polarity for electrode

/ 12 mm copper and

brass cylindrical

electrodes [241]

LM25 25% (volume

fraction)

Negative current 7.34 A, pulse duration

112 ls, positive: current 6.12 A, pulse

duration 108 ls

Copper electrode, maximize MRR

with minimum TWR, SR with brass

is higher than with copper

Fig. 23 Environmental SEM microsurface textures a after EDM and b after PMEDM (40% (volume fraction) SiC/Al-Al powder) [246]
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up to an optimal value and then decreased drastically; the

combination of low pulse on time and high peak current led

to a larger tool wear, higher energy, and rougher surface. It

was found that a high current resulted in higher thermal

loading on both electrodes (tool and workpiece) leading to

a higher amount of material being removed from either

electrodes [220]. Surface integrity effects of EDM include

roughening of the surface by deposition of a recast layer

and pitting of the surface by spark penetration and partic-

ulate pullout, as well as surface microcracks [221].

As can be observed from Fig. 21, craters and erosion are

evident; metal loss, erosion, and crater formation depend

on the intensity of the spark. The high energy of the arc

consumed during machining will increase the crater

diameter, surface irregularity, and heat-affected zone

(HAZ), and the surface will have more ridges and grooves.

When adopting a rotating tube electrode, an increase in the

rotational speed of the tube electrode can produce a higher

MRR and better SR [223]. For instance, Yu et al. [224]

machined microholes on a SiC/2024Al workpiece with a

cylinder electrode and tube electrode under the same

machining conditions. The MRR of EDM with the tube

electrode was significantly greater than that of the cylinder

electrode. Moreover, the accuracy of EDM holes can be

improved by using a tube electrode (rotating speed 800

r/min), as shown in Fig. 22. However, the TWR of a

rotating tube electrode tends to be higher and can even be

increased by 11.79% compared to that of a cylinder elec-

trode [225]. Regarding the flushing adopted in the EDM of

Al/SiC composites, a higher flushing pressure hinders the

formation of ionized bridges across the gap and results in a

higher ignition delay and decreased discharge energy,

thereby decreasing the MRR; however, the SR was found

to reduce with an increase in flushing pressure under a

certain range [223]. Singh et al. [226] showed that more

than 40% reduction in TWR and more than 28% increase in

MRR could be achieved by adopting compressed air for the

EDM of Al/15% SiCp ceramic composite.

Attempts for obtaining better parameters to achieve a

higher MRR, lower TWR, and better surface quality have

been made by many researchers. The optimization of the

EDM of Al/SiC composites can be performed by ANNs

[227], adaptive neuro-fuzzy inference system [228], fuzzy

logic [229], non-dominated sorting genetic algorithm

[230], principal component analysis (PCA)—technique for

order preference by similarity to ideal solution [231],

PCA—fuzzy inference coupled with Taguchi’s method

[232], and RSM [233–235]. Based on optimizations, the

recommended parameters are listed in Table 4 [236–241].

4.2 Powder mixed EDM (PMEDM)

PMEDM is a process variant of EDM, which is performed

by adding powder into a dielectric fluid [242]. It has a

different machining mechanism from conventional EDM

processes. It can improve the SR and is now applied in the

finishing stage [243]. The powder particles in the dielectric

fluid increase the gap between the tool and the workpieceFig. 24 Schematic of the WEDM process [259, 260]

Fig. 25 Microstructure of the residual SiC particles on the surface after the WEDM process a SEM observation and b magnification of the red

box area in a [265]
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while providing a bridging effect between the electrodes

for an even distribution of spark energy, making the pro-

cess more stable [244]. Kansal [245] declared that there

was a discernible improvement in the SR of work surfaces

after suspending the aluminum powder when machining

10% (volume fraction) SiCp/Al composites. Hu et al. [246]

compared the microsurfaces machined by using EDM and

PMEDM, as shown in Fig. 23, and the SR of PMEDM

decreased by approximately 31.5%.

Compared to conventional EDM, the presence of tung-

sten powder in PMEDM resulted in a 48.43% enhancement

of MRR in the machining of AA6061/10%SiC composite

[247] and 42.85% reduction in the recast layer of the

machined surface [248]. The thickness of white recast layer

also reduced, whereas the surface hardness was increased

with tungsten PMEDM [249]. Besides tungsten powder,

carbon nanotubes (CNTs) [250] and multi-walled CNTs

[251] are also added in the dielectric to obtain excellent

performances in PMEDM of Al/SiC MMCs. Vishwakarma

et al. [252] revealed that the PMEDM process provided a

better MRR at higher values of peak current, lower con-

centration of powder, mid-value of gap control, and lower

value of duty cycle [253]. Optimization of machining of

SiCp/Al MMCs with PMEDM can be achieved by using the

RSM [254], Taguchi and gray analysis [255], ANOVA

[256], etc. Kumar and Davim [257] suggested an optimum

set of parameters to obtain the highest MRR: powder

concentration 4 g/L, pulse duration 100 ls, peak current 9

A, and supply voltage 50 V; for the lowest SR: powder

concentration 4 g/L, pulse duration 100 ms, peak current 3

A, and supply voltage 50 V.

4.3 Wire EDM (WEDM)

WEDM differs from conventional EDM, as the electrodes

are in the form of a thin wire with a diameter of 0.05–0.3

mm [258]. WEDM is also known as wire electric discharge

cutting. The schematic of the WEDM process is presented

in Fig. 24 [259, 260].

The electrical conductivity and thermal conductivity of

MMCs are lower than those of unreinforced matrix alloys,

which decrease the MRR of WEDM [261]. With an

increase in the percentage of SiC particles, the machin-

ability of WEDM decreases [262]. An increase of 10% in

ceramic reinforcements may lead to an almost 12%

reduction in machining efficiency [263]. However, SiCp/Al

composites with high-SiC fractions can still be machined

using WEDM [260, 262, 264]. Yang et al. [265] reported

the WEDM of a 65% (volume fraction) SiC/2024Al com-

posite and proposed that the machining mechanism was a

combination of melting of the Al matrix and decomposition

of SiC particles. Figure 25 illustrates the microstructure of

the residual SiC particles on the surface after the WEDM

process. Figure 26 shows a cross-sectional microstructure

of the WEDM of the 65% (volume fraction) SiC/2024Al.

Fig. 26 Cross-sectional microstructure of 65% (volume fraction) SiCp/2024Al composite after the WEDM process a SEM observation result

and b corresponding schematic [265]

Fig. 27 Effect of discharge energy on surface roughness and material

removal rate [268]
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Pramanik [266] observed a significant variation in the

wire diameter during machining of SiC particles reinforced

with 6061 aluminum alloy. The variation was mainly

caused by the presence or absence of the matrix material

coating on the wire, which might cause uncontrolled spark

and variation in the ability of electrolytes. Wire breakage is

a limitation on the MRR, which can be observed when

machining Al/SiC composites. However, wire breakages

can be reduced by employing higher flushing pressures,

higher pulse off times, and suitable values of servo refer-

ence voltage. In general, it was suggested that large pulse

on time, high flushing pressure, appropriate wire speed and

wire tension, large pulse off time, and appropriate pulse

current should be used to obtain optimum machining per-

formance [267]. Figure 27 displays the effect of discharge

energy on SR and MRR during the WEDM of 45% (vol-

ume fraction) SiCp/Al [268]. It can be observed that the

discharge energy presents a strong relationship with

machinability by affecting the SiC thermal status.

Different from the conventional WEDM, the dry

WEDM was adopted as an environmentally friendly

modification of the oil WEDM process, in which the liquid

dielectric is replaced by a gaseous medium. An Al 6061C

25% SiC workpiece has been machined with dry WEDM

by Fard et al. [228]. Moreover, WEDM was modified to

machine a SiC/Al7075 MMC using a wire electrical dis-

charge turning (WEDT) process. WEDT was found to have

advantages over the conventional turning process [269].

Many optimizations have been conducted to predict the

machining performance or improve the machinability of

Fig. 28 BEAM flushing device and arc discharge schematic [281]

Fig. 29 Machined surface comparison a negative BEAM-20% (volume fraction) SiC/Al, b positive BEAM-20% (volume fraction) SiC/Al,

c milling-20% (volume fraction) SiC/Al, d negative BEAM-50% (volume fraction) SiC/Al, e positive BEAM-50% (volume fraction) SiC/Al,

f milling-50% (volume fraction) SiC/Al [281]
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SiC/Al MMCs, e.g., ANN-RSM [270], RSM [271–274],

Taguchi’s approach [275], Taguchi-based hybrid gray-

fuzzy grade approach [276], particle swarm optimization

[277], AHP-TOPSIS (a hybrid approach obtained by inte-

grating the AHP with TOPSIS technique) [278], and non-

dominated sorting genetic algorithm [279].

4.4 ADM

To some extent, ADM is similar to EDM, but ADM adopts

arc discharge whereas EDM utilizes spark discharge.

Generally, the machining efficiency of ADM is much

higher than that of EDM. Blasting erosion arc machining

(BEAM) was one type of ADM, which was developed

recently by Zhao et al. [11]. BEAM has been adopted in the

processing of SiCp/Al composites to improve the machin-

ing efficiency [280]. A flushing system is necessary to

conduct BEAM. Figure 28 depicts a flushing device that

can be fixed on a standard tool holder [281].

Gu et al. [282] machined a 20% (volume fraction) SiCp/

Al composite and achieved a high MRR of 8276 mm3/min

(peak current of 500 A) with a specific MRR of 16.4 mm3/

(A�min). Compared to the EDM MRR of 140 mm3/min

(peak current of 100 A) with a specific MRR 1.4 mm3/

(A�min) [219], the efficiency of BEAM is much higher.

Chen et al. [283] also conducted experiments on the

machining of 50% (volume fraction) SiCp/Al. The results

revealed that even for the high-SiC fraction SiCp/Al com-

posites, BEAM still could be used and the obtained MRR

was as high as 7 500 mm3/min. It was reported that BEAM

could also be used for other difficult-to-machine materials,

such as titanium alloys [284] and nickel-based superalloys

[285]. As shown in Fig. 29, both positive and negative

polarity machining can be adopted in BEAM; however, the

machined surface qualities are generally not the same.

Generally, positive BEAM tends to obtain a better surface

but a lower efficiency and higher TWR. The side effect of

BEAM is a rough surface, but fortunately, this problem can

be solved by adopting combined machining of CNC, as

reported by Chen et al. [281].

4.5 ECM

ECM is based on a controlled anodic electrochemical dis-

solution process of the workpiece with the tool as the

cathode in an electrolytic cell [286].

By analyzing the influence of the current density in the

ECM of 10% SiC/Al MMC, it was found that feed velocity

could be approached by a linear function beginning in the

origin of ordinates, which led to an active dissolution of the

workpiece material, at a low current density of 4 A/cm2, an

SR of 0.65 lm was achieved. The roughness was decreased

to 0.2 lm at 10 A/cm2 [287]. Kumar and Sivasubramanian

[288] compared the ECM of an A356 aluminum alloy

reinforced with 5%, 10%, and 15% (mass fraction) SiC

particles. They found that the maximum MRR was

obtained by applying the least voltage and least SiC con-

tent, a moderate value of electrode feed rate, and the

highest electrolyte concentration. Senthilkumar et al. [289]

illustrated that an increase in the applied voltage, flow rate,

and electrolyte concentration resulted in a higher MRR.

The optimized parameters for the ECM of LM25 Al/10%

SiC were as follows: electrolyte concentration 12.53 g/L,

electrolyte flow 7.51 L/min, applied voltage 13.5 V, feed

rate 1 mm/min. The corresponding MRR was 0.877 3

g/min and the SR was 6.566 7 lm. An optimal machining

parametric combination for the ECM of LM25-25% (vol-

ume fraction) SiC, i.e., electrolyte concentration 22.74 g/L,

electrolyte flow rate 7.57 L/min, applied voltage 14.8 V,

and tool feed rate 0.902 mm/min, was found out to achieve

a maximum MRR of 0.051 3 g/min and minimum Ra of

7.013 8 lm [290]. Another group of optimal parameters for

the ECM of 10%(mass fraction) SiC/Al matrix composites

was obtained by Dharmalingam et al. [291]. The optimal

values for maximum MRR were machining voltage 7 V,

electrolyte concentration 24 g/L, and frequency 50 Hz. The

optimal values for minimum overcut were machining

voltage 9 V, electrolyte concentration 18 g/L, and fre-

quency 50 Hz. Lehnert et al. [292] adopted an electro-

chemical precision machining process for complex

geometries. A voltage of 16 V and a feed rate of 0.25 mm/

min to generate the geometry with the smallest extent were

suggested.

4.6 Abrasive waterjet (AWJ) cutting

AWJ machining has many advantages compared to other

machining technologies. In contrast to thermal machining

processes (laser and EDM), AWJ does not induce high

temperatures, and thus, there is no HAZ [293]. In the AWJ

machining process, the workpiece material is removed by

the action of a high-velocity jet of water mixed with

abrasive particles based on the principle of erosion of the

material upon which the waterjet hits [294, 295]. It is

believed that the AWJ machining can be a real competitor

of the current techniques employed for cutting super-

abrasive materials [296]. Early in the 1990s, AWJ had been

used for the cutting of a 30%(volume fraction) SiC par-

ticulate/6061 matrix composite plate with a thickness of

5.08 mm. The MMC plate was easily machined and good

surface finish was produced [297]. Srinivas and Babu [298]

observed the cut surfaces with SEM, as shown in Fig. 30,

and proposed a possible mechanism of material removal,

which was the fracturing and ploughing of SiC and the

ductile fracturing of the matrix material.
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Based on experiments performed on SiC/Al matrix

composites with different SiC mass fractions (5%–20%),

Srinivas and Babu [299] suggested that appropriate choices

of abrasive mass flow rates and jet traverse speeds were of

considerable importance over other parameters such as

waterjet pressure. Patel and Srinivas [300] employed an

AWJ to perform similar turning of an aluminum-SiC MMC

and showed that AWJ could be suitable for turning MMCs

without the problems encountered in conventional turning

such as tool wear. In addition, it was found that the traverse

rate and nozzle angle influence the SR and MRR more than

the SiC contents.

4.7 Laser machining (cutting)

Laser machining offers significant advantages for rough

cut-off applications. Laser is very suitable for machining at

high feed rates (up to 3 000 mm/min) and can produce a cut

with a narrow kerf width (0.4 mm). However, the quality of

the laser-cut surface is relatively poor, e.g., striation pat-

terns on the cut surface, burrs at the exit of the laser, and

significant thermally induced microstructural changes can

be observed [293]. Sharma and Kumar [301] reported that

the most prominent input parameters of laser cutting of

AA5052/SiC were cutting speed, reinforced SiC particles,

and arc radius. The formations of a recast layer and new

phase Al4C3 were detected respectively. When the rein-

forced SiC particle quantity was fixed at 20% (mass frac-

tion) and the nozzle standoff distance was decreased from 2

mm to 1 mm, the dross height increased from 0.373 mm to

0.481 mm [302]. Figure 31 displays a group of SEM

images of surfaces cut by a laser beam process. Unburned

SiC particles (marked in circular dashed line) and restricted

flow of molten material into a downward direction can be

observed.

The laser beam can also be utilized as a cutter or driller

to conduct turning or drilling. For example, Biffi et al.

[303] used a short-duration laser beam as a tool and cut a

thread in an A359-20% SiC composite material (although

with limited removal rates). Padhee et al. [304] employed a

laser beam and drilled holes on 15% (mass fraction)SiC/Al

matrix composites (limited to microhole drilling).

4.8 Jet-ECM

Jet-ECM is a technology for quickly and flexibly generat-

ing microstructures and microgeometries in metallic parts

regardless of the material hardness and without any thermal

or mechanical impact [305, 306]. As indicated in Fig. 32,

the electrolytic liquid is pumped through a small nozzle

and ejected with a mean velocity of approximately 20 m/s

to form a free jet [307]. By using a pulsation-free pump, a

continuous supply of fresh electrolyte with constant pres-

sure is assured to generate a well-defined geometrical

shape [305].

The dissolution characteristic in the machining of SiC/

Al MMCs utilizing Jet-ECM varies with the electrolyte

used. When using NaNO3, the depth and width were hardly

affected by the particle fraction, however, in the case of

NaCl and NaBr, the particles significantly influenced both

the width and depth [308]. Figure 33 shows that the

aqueous electrolytes of NaNO3 and NaCl produce different

electrochemical dissolution characteristics [309]. While the

diameters of the calottes created with both electrolytes are

similar, the use of NaCl electrolyte results in significantly

deeper calottes for machining times of approximately 1.5–2

s.

5 Conventional and nonconventional hybrid
machining of SiCp/Al matrix composites

5.1 Laser-assisted machining (LAM)

Compared with the conventional cutting process, LAM

[310–314] heats the workpiece with a laser beam to change

the microstructure or locally harden the material near the

cutting tool. To date, most investigations regarding LAM

Fig. 30 SEM photograph showing cutting of SiC reinforcement by 60 mesh size garnet abrasives in AWJ (10%SiCp-MMC) [298]
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of SiCp/Al matrix composites are focused on laser-assisted

turning.

Figure 34 presents a schematic of the laser-assisted

turning. The LAM process demonstrates a considerable

improvement in the machining of MMCs through a lower

tool wear and thus increased tool life, as well as reduction

in cutting time [315].

LAM provides a higher MRR under the same SR

compared to conventional machining. LAM reduced the

machining time of Al/SiCp/45% MMCs by 45% due to

fewer tool changes, high MRR, and longer tool life com-

pared to conventional machining, the shorter machining

time and longer tool life provide a 40%–50% cost saving

per part, but with the additional cost of a graphite coating

and diode laser [316]. Figure 35 illustrates a comparison of

tool (uncoated and coated) life for conventional machining

and LAM.

Kawalec et al. [317] found a decrease in cutting force

during LAM of aluminum matrix composites compared to

conventional turning. Kong et al. [318] explained that

abrasive tool wear was the most dominant wear mechanism

for three different WC tools in the LAM of SiCp/45%

composites. The adhesion wear and diffusion wear were

accelerated to some extent with increasing temperature.

5.2 Ultrasonic assisted machining (UAM)

UAM or ultrasonic vibration machining is a hybrid process.

It can reduce the influence of tearing, plastic deformation,

and BUE in cutting and can restrain flutter, making the

cutting process more stable [319]. By employing an

ultrasonic-vibration source, conventional cutting processes

can be modified as ultrasonic vibration–assisted processes.

Typical UAM processes are ultrasonic assisted turning

[320, 321], ultrasonic assisted milling [322, 323], ultra-

sonic assisted drilling [324, 325], and ultrasonic assisted

grinding [326–328].

Ultrasonic assisted turning shows improvement in both

cutting force and surface topography compared to con-

ventional turning [321]. Zhong and Lin [320] reported that

the roughness of an MMC A359/SiC/20p surface turned

with vibration was better than that turned without vibra-

tions. In ultrasonic milling, the SiC particle removal form

can be classified into type of cut, pulled, pressed, and crack

penetration; increasing the number of SiC particle cut type

results in better surface smoothness [323]. Xiang et al.

[322] reported that a superior roughness of ultrasonic

assisted milling of 65% (volume fraction) SiC/Al com-

posites could be obtained at a cutting speed 160 m/min,

feed rate 0.02 mm/z, and depth of cut 0.2 mm. During the

ultrasonic vibration drilling, the SiC particle in the com-

posites tended to break along the crystal connection

boundary or suffer ductile fracture under the dynamic

ultrasonic impulse, in which the cutting resistance could be

reduced and the tool edge could be protected. Thereby, the

drilling location precision and hole surface quality were

enhanced; the wear of the drill chisel edge was effectively

improved, and the drilling torque was reduced by approx-

imately 30% [324]. Ultrasonic vibration produces a smaller

burr height and width in the drilling of Al/SiC MMC. The

burr height and width in UAM are respectively 83% and

24% lower than those in conventional drilling [325]. In

ultrasonic grinding, the grinding force and SR were found

Fig. 31 SEM micrograph showing unburned SiC reinforced particles and restricted flow (20% SiC/Al) [301]

Fig. 32 Principle of Jet-ECM [307]

304 J.-P. Chen et al.

123



lower than those in ordinary grinding for the same grinding

parameters [326, 327]. The reduction in cutting force and

SR can reach 13.86% and 11.53%, respectively [329].

Zheng et al. [328] showed some optimum conditions for

the grinding of 45% SiCp/Al2024 composites using ultra-

sonic vibration. For a minimum value of SR, the

parameters were as follows: spindle speed 15 000 r/min,

vibration amplitude 5 lm, cutting depth 15 lm, and feed

rate 5 mm/min.

5.3 Other hybrid machining technologies

The electrolytic in-process dressing (ELID) technique

applies an electric current during the conventional grinding

process. Shanawaz et al. [330] employed ELID for the

machining of low fraction SiCp/Al composites and found

that a smoother surface could be obtained at a high current

duty ratio. Yu et al. [331] obtained a high-integrity

machined surface for a high-SiC fraction (56%(volume

fraction)) SiCp/Al composite. On the workpiece surface,

most of the SiC particles were removed in ductile mode,

and the brittle fracture of SiC particles was reduced

substantially.

Surface-electrical discharge diamond grinding consists

of diamond grinding and EDM with a rotating disk, which

can enhance the MRR and produce a better surface finish

[332]. Agrawal and Yadava [333] found the best combi-

nation of processing 10% (mass fraction)Al/SiC, which

was as follows: wheel speed 1 400 r/min, table speed 4

mm/s, in feed 20 m, current 24 A, pulse on time 50 ls, and
duty factor 0.817.

The waterjet-guided (WJG) laser process uses a pres-

surized microwaterjet as a laser beam guide. Marimuthu

et al. [334] conducted an experiment on the WJG laser

drilling of 40% (volume fraction) SiC reinforced aluminum

MMCs. The advantages found include high levels of hole

circularity, no HAZ, no recast layer, and no changes in

microstructure.

Electrochemical discharge machining (ECDM) combi-

nes the actions of EDM and ECM. Liu et al. [335]

employed ECDM to machine 20% (volume fraction) SiC/

Al matrix composites and revealed that smaller median and

maximal debris sizes were found in the ECDM process,

which indicated that the arc energy of ECDM was likely to

Fig. 33 Images of calottes on EN AW 2017 ? 10% SiC particles machined with aqueous electrolytes of NaNO3 and NaCl [309]

Fig. 34 Schematic of the laser-assisted machining process (A heating

area of the laser beam; B zone of machining; d workpiece diameter)

[315]

Fig. 35 Tool life of uncoated and coated tools in conventional

machining (CM) and laser-assisted machining [316]
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be smaller than that of the EDM process (which could be

explained from the aspect of total energy).

6 Conclusions

This review has summarized the aspects regarding the

machinability of SiCp/Al composites with conventional

machining, i.e., turning, milling, drilling, and grinding, and

nonconventional machining, i.e., EDM, PMEDM, WEDM,

ECM, AWJ, Jet-ECM, and newly developed high-effi-

ciency machining technologies. Machining efficiency,

surface quality, and tool wear need to be first considered

regardless of the machining method. With conventional

machining methods, the machining efficiency tends to be

enhanced by increasing machining parameters such as

machining speed, cutting depth, and feed rate; however, the

increased parameters can easily intensify tool wear and

shorten tool life. Besides, different SiC fractions of SiCp/Al

composites also present different degrees of influence on

the machining mechanism, tool wear mechanism, chip

formation, and even the machined surface integrity. Higher

percentages of SiC particles are more likely to result in a

lower machining efficiency and higher tool wear. Hence,

various optimization methods, i.e., ANOVA and gray

relational analysis, regression models, ANN models, and

response surface methodology can be employed to find the

most suitable machining condition.

For the nonconventional machining of SiCp/Al, i.e.,

EDM, PMEDM, WEDM, ECM, Jet-ECM, and AWJ, it is

believed that the SiC particles can interfere with the elec-

trical discharges during the EDM of SiCp/Al. Hence, the

MRR, TWR, and surface quality are strongly related to the

electrical parameters, i.e., gap voltage, peak current, pulse

on time, and pulse off time. Moreover, non-electrical

parameters such as flushing can affect machinability, e.g., a

higher flushing pressure can decrease the discharge energy

and reduce the MRR. One of the main problems encoun-

tered with the nonconventional machining of SiCp/Al is the

relatively low machining efficiency. However, this prob-

lem can be partly solved by adopting newly developed

high-efficiency arc discharge technologies, e.g., BEAM,

where the achieved MRR can be hundreds times higher

than that of the conventional EDM. The drawback of the

arc discharge is the rough machined surface, but fortu-

nately, this can be eliminated by a combination of con-

ventional cutting processes. Hence, employing of arc

discharge to obtain a high MRR and the combination of

conventional cutting to achieve a fine surface quality may

be an efficient and economical way of machining SiCp/Al

composites.

In recent years, an increasing number of SiCp/Al com-

posites with high-SiC fraction, e.g., 50%, 55%, and 65%

(volume fraction), have attracted the attention of investi-

gators. For these high-SiC fraction SiCp/Al composites,

turning and milling processes are generally adopted, and

nonconventional processes such as EDM, BEAM, and Jet-

ECM are also preferred by researchers. It is concluded that

there will be more machining methods and investigations

regarding high-SiC fraction SiCp/Al composites in the

future.
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