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Abstract
The soft computing techniques have been widely applied to model and analyze the complex and uncertain problems. This 
paper aims to develop a novel model for the risk assessment of tunneling projects using artificial bee colony algorithm. 
To this end, the risk of the second part of the Emamzade Hashem tunnel was assessed and analyzed in seven sections 
after testing geotechnical characteristics. Five geotechnical and hydrological properties of study zone are considered for 
the clustering of geological units in front of tunneling project including length of tunnel, uniaxial compressive strength, 
rock mass rating, tunneling index Q, density and underground water condition. These sections were classified in two low-
risk and high-risk groups based on their geotechnical characteristics and using clustering technique. It was resulted that 
three sections with lithologies Durood Formation, Mobarak Formation, and Ruteh Formation are placed in the high risk 
group and the other sections with lithologies Baroot Formation, Elika Formation, Dacite tuff of Eocene, and Shear Tuff, 
and Lava Eocene are placed in the low risk group. In addition, the underground water condition and density with 0.722 
and 1 Euclidean distances have the highest and lowest impacts in the high risk group, respectively. Therefore, compar-
ing the obtained results of modelling and actual excavation data demonstrated that this technique can be applied as a 
powerful tool for modeling risks of tunnel and underground constructions.
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1  Introduction

With the expansion and complexity of engineering prob-
lems in recent years, the use of optimization methods 
has faced significant successes. Optimization problems 
in the real engineering world are becoming increasingly 
complicated. Therefore, many researchers are using soft 
computing as a powerful alternative tool in solving these 
problems [1–6]. The risk assessment of civil and indus-
trial projects is one of the most attractive and practical 
engineering problems and is inherently uncertain and 
complex [7–14]. Some researches were conducted on the 
tunneling projects’ risk using different methods such as 

Fault Tree, Even Tree and Monte Carlo Simulation [15–19]. 
Nezarat et al. [20] investigated and ranked geological risks 
in mechanized tunneling by using fuzzy analytical hierar-
chy process (FAHP). Golab tunnel was considered as a case 
study in the research work. They found out that squeezing 
and face tunnel instability had highest level and gas emis-
sions and clogging of clay had the lowest level of risks in 
this tunnel [20]. The risk assessment of tunneling projects 
has always faced uncertainty in data analysis due to the 
geological complexities and nonlinear nature of the pro-
jects. Various methods are used for the risk assessment of 
tunneling projects. In a research, the risk of underground 
projects in the construction phase (oil depot) was assessed 
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by Wang et al. [21] using the fuzzy comprehensive evalu-
ation method. They used geological properties as the 
risk assessment criteria in order to study the risk. Finally, 
a proper match was obtained between the risk analysis 
using the fuzzy logic and the visual results obtained from 
this underground depot, indicating the suitability of soft 
methods in the risk assessment of underground projects 
[21].

Li et al. [22] assessed the geological hazards in the 
engineering of underground projects using a new 
quantitative method called Attribute Interval Evalua-
tion Theory. They proposed prioritization for geologi-
cal hazards using this method. The method proposed 
in this research is not only capable of risk assessment 
and prioritization, but it can also assess the validity of 
results. In this method, the acceptable correlation coef-
ficient is 80%. Finally, after implementing assessments, 
this method was introduced as a proper numerical 
method for the risk assessment [22]. The risk assess-
ment of geological hazards in the excavation route of 
the Ardabil–Miane railway tunnel, kilometer 378 + 021 
was conducted by Mikaeil et al. [23] using the harmony 
search algorithm. Their results showed that harmony 
search algorithm can assess and predict geological risks 
in tunneling projects [23]. Haghshenas et al. [24] con-
ducted the geological risk assessment of the Ghomrud 
tunnel. They determined three effective parameters in 
the design and excavation of tunnels, namely, overbur-
den (H), internal friction angle (φ), and cohesion (C), and 
used them in the clustering of geological units in the 
tunnel route. Their results were validated with the drill-
ing rate index (DRI), which indicated the high ability of 
the fuzzy c-means (FCM) algorithm in the clustering of 
geological units in tunneling projects and the appropri-
ate provision of the condition of the region for evaluat-
ing the risk management in the project [24]. Esmailza-
deh et al. [25] carried out technical analysis of collapse 
in tunnel excavation. Based on their results, they made 
some recommendations in order to stabilize of tunnel 
crown [25]. Haghshenas et al. evaluated tunneling pro-
jects risks using the fuzzy analytical hierarchy process. 
In this research, 11 risks and 3 criteria were selected for 
investigation and ranking of Toyserkan Doolayi tun-
nel’s risks. The results showed that the risk of swelling 
of rock had the highest rank [26]. Sun et al. [27] investi-
gated tunnel collapse risk using multistate fuzzy Bayes-
ian networks. The results showed that this method was 
very suitable for evaluating of the collapse probability 
of the Yu Liao Tunnel [27]. Xiong et al. [28] proposed a 
method for 3D multi-scale geology modeling for tunnel 
engineering risk assessment. Based on their results, they 
made some recommendations for a case study, railway 
tunnel engineering of the Yuelongmen tunnel in China 

[28]. A risk assessment model is proposed by Xia et al. 
[29]. They used fuzzy logic and similarity measure theory. 
The results clearly showed the capability of the proposed 
model for evaluating of risk this case study [29]. Li and 
Yang [30] used improved attribute mathematical theory 
to propose risk assessment model of tunnel water inrush. 
Finally, based on their results, the proposed model was 
reliable [30]. Mikaeil et al. [31] evaluated the risks of tun-
neling project using two soft computing techniques. 
Based on their results, they made some recommenda-
tions for risk assessment based upon applications of 
intelligent approaches [31]. A non-parametric bayesian 
network have been developed to evaluate tunneling risk 
analysis by Wang et al. [32]. Their results indicated that 
the new developed model is a reliable model for evaluat-
ing of tunneling risk analysis [32]. In another study, risks 
of Beijing subway tunnel construction investigated by Xu 
et al. [33]. They used the new Austrian tunneling method 
to investigate and, they found out that this approach can 
be applied as a powerful tool for evaluating of Beijing 
subway tunnel excavation [33]. Bakhtavar and Yousefi 
[34] analyzed ground vibration risks on the infrastruc-
tures located inside a mining area using a developed 
hybrid approach based on fuzzy failure mode and effects 
analysis (FMEA) and a fuzzy slack-based measure model 
[34].

The identification and assessment of geological hazards 
are two of the most important parts of risk management 
because they involve the clustering of geological units 
[35]. This paper aims to develop a new model for the risk 
assessment of the second part of the Emamzade Hashem 
tunnel project. It is worth mentioning that ABC algorithm 
has not been used in previous studies for investigating 
of risk assessment. There are always complex and unpre-
dicted conditions in evaluating of tunneling projects’ 
risk, hence in order to investigate these conditions, ABC 
algorithm as a stochastic algorithm can be more useful in 
comparison with classic modelling. Different parameters 
and criteria affect the geological structures in this project, 
including the geotechnical and hydrological properties of 
the tunnel implementation scope, such as uniaxial com-
pressive strength (UCS), rock mass rating (RMR), tunneling 
index Q, and density and underground water condition. 
Therefore, these criteria and parameters are determined 
for data analysis and geological units’ clustering through 
laboratory methods or using previous studies for collect-
ing influential parameters in the behavior of the geological 
structures in the seven sections of the tunnel route. Then, 
the results obtained from these sections are analyzed and 
classified using the artificial bee colony (ABC) algorithm as 
one of the meta-heuristic algorithms. Finally, after valida-
tion, the results are classified into two groups of high-risk 
and low-risk sections.
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2 � Case study

The mechanized tunneling projects are one of the most 
important constructional infrastructures in which the 
ranking and assessment of risk are used as one of most 
important and influential parameters in designing and 
implementation of such projects [36, 37]. Hence, one of 
the most strategic tunneling projects in north of Iran is 
considered for risk assessment. The second part of the 
Emamzade Hashem tunnel is one of the most important 
and strategic tunneling projects in Iran. The total length 
of the tunnel is approximately 5.6 (km), which includes 
the second part (approximately 3200 m). This tunnel is 
located in the northeast of Tehran and at the boundary 
of Mazandaran in an entirely rocky environment and is a 
part of the mountainous region of the Alborz mountain 
range. The maximum and minimum overburden thick-
nesses of the tunnel crest are 450 m and 50 m, respec-
tively. The lithologies of the region under study and the 
project implementation include the Durood Formation 
(H-3), the Mobarak Formation (H-16), the Ruteh Forma-
tion (H-16), the Shear Tuff and Lava Eocene (H-4), the 
Dacite tuff of Eocene (H-1), the Elika Formation (H-11), 
and the Baroot Formation (H-15). Figure 1 shows the tun-
nel implementation route from the beginning of excava-
tion to the end of the route in different formations [35, 
38].

Table 1 shows that the geotechnical properties are 
the criteria for the data analysis and clustering of the 
geological units of the sections under study [35, 38].

3 � Methodology

In order to assess uncertain problems, soft comput-
ing techniques can be applied with a satisfactory per-
formance for modeling some problems involved in 
engineering [39–46]. The ABC algorithm is one of the 
most widely used evolutionary methods in the area of 
soft computing. In fact, the algorithm’s performance 
is inspired by the honey bee colony [47, 48]. This algo-
rithm was first introduced by Karaboga who used it for 
the optimization of different problems in the industry, 
transportation systems, and traffic.

The honey bee colony is generally composed of three 
sections, namely, food sources, worker bees, and non-
worker bees. Non-worker bees are further divided into 
two sections: onlooker and scout bees. Honey bees 
use a complex communication system. The relation-
ship among bees is established through a dance lan-
guage. The dance language includes a set of continuous 
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motions performed by bees. This dance, called waggle 
dance, contains information on the quality of source, 
location, and position of bees. First, a set of food sources 
is randomly selected. Worker bees move toward the 
sources and compute the amount of honey. Then, these 
bees return to the hive and share their information with 
onlooker bees. In the second step, after the exchange of 
information, each worker bee moves toward the source 
and may select a new source near the previous one 
based on the information in its mind. Scout bees search 
the surrounding environment for new food sources. 
When the food source runs dry or bees leave and move 
toward a new source, the fitness of the new source (solu-
tion) is first investigated based on the previous sources 
(solutions). If the fitness of the new source is better than 
those of the previous sources, the new source (solution) 
is maintained in the memory of the bee; otherwise, the 
fitness of the new food source is added as another crite-
rion for assessing the least and best sources. This process 
continues until all the requirements are satisfied by find-
ing the most optimal solution. Equation (1) represents 
the process of finding a new location for each bee [49].

where �ij is the position of the initial bee, and xij and xkj 
are the positions of the initial and the other bees (neigh-
bor bees), respectively. The lower the value of xij − xkj is, 
the lesser the deviation from xij will be. Values k and j are 
randomly selected, and BN is the number of worker bees, 
which is equal to food source number (SN). In addition, 
variable k is different from variable i. �ij is a random num-
ber between interval [− 1, 1], and this variable controls 
the production of food sources around xij . Equation (1) 
attempts to move the initial position toward or against 
the value of index �ij in the next movements [47, 48]. After 
the search operations, the observers assess and study the 
data obtained from the worker bees, and considering the 

(1)
�ij = xij + �ij(xij − xkj)

k ∈ {1, 2,… , BN}, i ≠ k, j ∈ {1, 2,… ,D}

data obtained about the food sources with possibilities, a 
food resource is selected based on Eq. (2) [50].

where Pi indicates the proper probability for the food 
source. SN is the number food sources (the number of 
existing solutions). fiti is the fitness function of food 
sources, which corresponds to the ith bee. If a food source 
runs dry and or lacks proper quality, worker bees leave 
and turn into scout bees [51]. This means that if in the fit-
ness model a point is not improved after several iterations, 
the local optimal point should be abandoned and a new 

(2)pi =
fiti

∑SN

n=1
fitn

Table 1   The results obtained from field and laboratory studies on the second part of Emamzade Hashem Tunnel

Section name Lithology Length (m) UCS (Mpa) RMR Average groundwa-
ter table (m)

Q Density 
(g/cm3)

H-4 Shear Tuff and Lava Eocene 130 35 19 35 0.02 2.6
H-1 Dacite Tuff of Eocene 600 55 43 125 0.49 2.6
H-3 Durood Formation 520 120 63 265 9 2.6
H-16 Mobarak Formation 140 75 55 270 1.95 2.6
H-2 Ruteh Formation 1020 110 59 195 8 2.6
H-11 Elika Formation 180 40 44 70 2.52 2.6
H-15 Baroot Formation 130 30 50 25 2 2.6

Fig. 2   Behaviour of honeybee foraging for nectar [52]



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1711 | https://doi.org/10.1007/s42452-019-1749-9	 Research Article

random point selected. Behaviour of honeybee foraging 
for nectar is indicated in Fig. 2.

It is worth mentioning that artificial bee colony can be 
a powerful tool for identifying and assessing variety of 
the real world problems under uncertain conditions, and 
unlike some evolutionary algorithms, the advantage of 
this algorithm is that less control parameters are required. 
In this study, given that risk in tunneling projects is uncer-
tain and unpredictable, the ABC algorithm, which is one 
of the most widely used soft computing methods in the 
rock mechanics, geotechniques, and mining fields, is used 
for solving complex problems of risk for its high ability and 
random techniques [53].

4 � Modeling and discussion

To study and evaluate the field and laboratory results 
obtained in this study, one of the most important applica-
tions of the ABC algorithm optimization in data clustering 
is used. In the first step of modeling, after preparing the 
pseudo-code of the algorithm in MATLAB software, the 
control parameters of the algorithm are adjusted based on 
the previous studies and the opinions of skilled experts in 

Table 2 [54–56]. Then, the data in Table 1 are normalized 
based on Table 3 to be introduced into the algorithm.

After the implementation of the algorithm and the opti-
mization process, the output data are analyzed. Table 4 
shows the results of data analysis of the minimum error. In 
addition, Figs. 3 and 4 illustrates the process of determin-
ing the best cost value in each replication and the distance 
of each criterion from the class under study, respectively.

Based upon Fig. 4, each criterion that has the lowest 
distance from each class, it has the most effect on that 
class. For instance in comparison between two classes for 
C1 (UCS), it has more influence on the sections H-4, H-1, 
H-11, and H-15 that are placed in the first class, in compari-
son with the sections H-2, H-3, and H-16 that are placed in 

Table 2   The control parameters for artificial bee colony algorithm

The control 
parameters

Maximum 
number of 
iterations

Minimum 
acceptable 
error

Colony size Number of 
onlooker 
bees

Value 250 0.00001 100 100

Table 3   The normalized 
value of geotechnical and 
hydrological properties

Section name Lithology UCS (C1) RMR (C2) Average 
groundwater 
table (C3)

Q (C4) Density (C5)

H-4 Shear Tuff and Lava Eocene 0.292 0.301 0.141 0.002 1
H-1 Dacite tuff of Eocene 0.458 0.682 0.463 0.058 1
H-3 Durood Formation 1 1 0.981 1 1
H-16 Mobarak Formation 0.625 0.873 1 0.217 1
H-2 Ruteh Formation 0.917 0.937 0.722 0.889 1
H-11 Elika Formation 0.333 0.698 0.259 0.28 1
H-15 Baroot Formation 0.25 0.283 0.093 0.222 1

Table 4   The process of 
determining the minimum 
acceptable error

Step (n) Ũ(n−1) Ũ(n) 𝜀
L
= Ũ(n) − Ũ(n−1) Result

Minimum acceptable error 159 2.6366 2.6355 0.0001 > 0.00001 Continue
160 2.6355 2.6355 0 < 0.00001 Continue
250 2.6355 2.6355 0 < 0.00001 Stop

Fig. 3   The process of determining the best cost
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the second class. In addition, C5 (Density) has same role in 
both classes with equal distances. On the other hand, in 
comparison between criteria in each class, C4 (tunneling 
index Q) and C3 (Average Groundwater Table) with 0.142 
and 0.722 Euclidean distances have the most effect on 
the first and second classes, respectively. According to 
Table 4, the best cost value from replication 159 reaches 
the minimum allowable error and is fixed until the 250th 
replication. This reflects the high convergence of the ABC 
algorithm in optimizing clustering problems.

In the final step of analysis, the optimum partition 
value of each section is determined to be two groups. 
Based on the values, sections are classified into two 
groups according to Table 5. This clustering clearly shows 

that three sections with lithologies Durood Formation, 
Mobarak Formation, and Ruteh Formation are placed in 
the group with close geological properties and four sec-
tions with lithologies Shear Tuff and Lava Eocene, Dacite 
tuff of Eocene, Elika Formation, and Baroot Formation 
are placed in the group with different properties but the 
same category.

According to Table 5, sections H-4, H-1, H-11, and H-15 
are placed in the first class and sections H-2, H-3, and 
H-16 are placed in the second class. Finally, for the vali-
dation of results, Table 6 shows the comparison of the 
results obtained from the conducted analyses with the 
results of a study conducted on the sections in the tun-
neling project [31, 35].

The sections are correctly placed in two groups in 
terms of risk, that is, high-risk and low-risk groups. This 
clustering result can be used by designers and con-
tractors in the design and implementation phases and 
reduce the costs of geological risks in the project. The 
comparison of the validation results with previous stud-
ies including the Particle Swarm Optimization (PSO), 
Fuzzy C-means (FCM) clustering approach and the Fail-
ure Modes and Effects Analysis (FMEA), shows the high 
accuracy and convergence of the bee algorithm, which 
can be a suitable solution for other highly complex and 
uncertain problems in tunnel engineering and geotech-
nic [35]. The results of this study provide a new attitude 

Fig. 4   The distance of each 
criterion from each class

Table 5   Optimization and clustering of sections by ABC algorithm

Section name Optimum 
partition

Optimum 
partition

Clustering Clustering

H-4 0.199 1.385 First class H-4
H-1 0.824 1.019 H-1
H-3 1.275 0.3 H-11
H-16 0.961 0.786 H-15
H-2 1.208 0.0003 Second class H-3
H-11 0.318 0.992 H-16
H-15 0.208 1.309 H-2

Table 6   Comparison of results 
of ABC algorithm with FEMA, 
PSO and FCM

Section name H-4 H-1 H-3 H-16 H-2 H-11 H-15

Value of risk using FMEA 9.42 9.42 162 162 160.8 0.49 14.18
Clustering using particle swarm optimization 1 1 2 2 2 1 1
Clustering using fuzzy C-means 1 1 2 2 2 1 1
Clustering using artificial bee colony algorithm 1 1 2 2 2 1 1
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in tunneling projects which may lead engineers toward 
a more reliable design and planning for future risk 
mitigation.

5 � Conclusions

The use of meta-heuristic algorithms in risk assessment 
and analysis based on uncertain and unpredicted condi-
tions has shown significant progress. The risk analysis of 
underground projects has always been faced with com-
plex and uncertain conditions. Tunneling projects are one 
of the most important projects that require risk analysis 
and investigation at the beginning of the project due to 
different complicated criteria. Risk assessment in tunneling 
projects based on the geology of the region before the 
design and implementation of tunneling projects is one 
of the most important steps of project management. 
Thus, a study was conducted on the second part of the 
Emamzade Hashem tunnel using the ABC algorithm. In 
this research, seven sections in the route of project with 
different lithologies are selected, and their geotechnical 
properties are assessed and tested. Then, an optimized 
clustering (weak and strong risk classes) of the sections 
is conducted. Finally, three sections Durood Formation, 
Mobarak Formation, and Ruteh Formation are placed in 
the high risk group and four sections Baroot Formation, 
Elika Formation, Dacite tuff of Eocene and Shear Tuff, and 
Lava Eocene are placed in the low risk group. It is worth 
mentioning that C3 (Average Groundwater Table) with 
Euclidean distance equal 0.722 has the most effect on 
three sections Durood Formation, Mobarak Formation, 
and Ruteh Formation in the high risk group (The second 
class). In addition, C4 (tunneling index Q) with Euclidean 
distance equal 0.142 has the most effect on four sections 
Baroot Formation, Elika Formation, Dacite tuff of Eocene 
and Shear Tuff, and Lava Eocene in the low risk group (The 
first class). Finally, after validation, the results indicated 
that there was a full compliance between the results of 
this analysis and previous study. Consequently, it can be 
concluded that this novel approach is able to tackle for 
risk assessment of tunneling projects. For future study, it 
is recommended to use other intelligent algorithms such 
as gray wolf, Bat and fire fly algorithms and support vector 
machine for risk assessment of tunneling project.
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