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Abstract

Purpose of Review Latest requirements of the global market force manufacturing systems to a change for a new production
paradigm (Industry 4.0). Cyber-Physical Systems (CPS) appear as a solution to be deployed in different manufacturing fields,
especially those with high added value and technological complexity, high product variants, and short time to market. In this
sense, this paper aims at reviewing the introduction level of CPS technologies in micro/nano-manufacturing and how these
technologies could cope with these challenging manufacturing requirements.

Recent Findings The introduction of CPS is still in its infancy on many industrial applications, but it actually demonstrates its
potential to support future manufacturing paradigm. However, only few research works in micro/nano-manufacturing considered
CPS frameworks, since the concept barely appeared a decade ago.

Summary Some contributions have revealed the potential of CPS technologies to improve manufacturing performance which
may be scaled to the micro/nano-manufacturing. IoT-based frameworks with VR/AR technologies allow distributed and collab-
orative systems, or agent-based architectures with advance algorithm implementations that improve the flexibility and perfor-
mance of micro-/nano-assembly operations. Future research of CPS in micro-/nano-assembly operations should be followed by
more studies of its technical deployment showing its implications under other perspectives, i.e. sustainable, economic, and social
point of views, to take full advance of all its features.

Keywords Cyber-Physical Systems (CPS) - Cyber-Physical Production Systems (CPPS) - Micro-manufacturing -
Nano-manufacturing - Micro-assembly

Introduction

Global manufacturing is currently challenged by market
trends of a more personalized production demand [1] while
decreasing product’s life-cycle. These market requirements
force to rethink manufacturing under a holistic vision as it is
nowadays, and drive a change to a new manufacturing
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paradigm which materializes in the Industry 4.0 (I14.0) concept
[2]. This new smart manufacturing in 14.0 is supported by the
adoption of adaptable, autonomous, evolvable, and collabora-
tive systems [3] [4] [5] and founded by the introduction of the
Cyber-Physical Systems (CPS) concept [6], or Cyber-Physical
Production Systems (CPPS) [7] when talking about its specif-
ic application to manufacturing industry. Both concepts arise
from the combination of computational and physical resources
in systems. These systems are computational entities highly
connected to their physical counterpart and, subsequently, rely
on the latest developments on manufacturing science and
technology, as well as on computer science, information,
and communication technologies to provide and use data-
accessing and data-processing services simultaneously. This
multi-disciplinary approach is seen with huge expectation as
an extremely important step in the development of future
manufacturing systems.

Some industries, as the micro/nano-manufacturing, are
more affected by the aforementioned challenges, where short
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time horizons, high product variant turnovers, and semi-
manual assembly operations are common [8] [9] [10].
Micro/nano-manufacturing is, in general, a very specialized
and sophisticated production due to the technical requirements
of the scale. It defines a network of specialized and coopera-
tive factories and enterprises involved along the whole prod-
uct life-cycle, physically distributed in different teams, sharing
product information, and knowledge along the cycle. The fast-
emerging micro-manufacturing domain is estimated to be val-
ued € 64.6 billion in 2019 and expected to reach € 141.6
billion by 2024, at a CAGR of 16.9% from 2019 to 2024
[11]. The evolution of the micro/nano-manufacturing started
in the 1990s when the assistance of an experienced operator
was required to the use of micro-techniques combined with
computer performances applied to the control equipment and
vision systems to operate at a micro-scale [12]. One of the
main bottlenecks is still represented by the assembly phase,
which often amounts to the largest part of the final product
costs. Robotic micro-/nano-assembly manufacturing faces
with high complexity [13] mainly caused by the high accuracy
required over a large range of motion and the complexity of
reduced scale of actuators and sensors.

In order to achieve an efficient and accurate manipulation
of micro-/nano-components, modelling the physics at the
micro-scale plays a major role [14]. Nevertheless, significant
differences are present when comparing the macro- and the
micro/nano-scale behaviours [13] [15] [16], where superficial
forces predominate over volumetric ones. During the last de-
cades, basic models have been developed, although the cur-
rent behaviour of the micro-process is impossible to predict
due to the high sensitivity of the predominant forces to exter-
nal or environmental parameters (humidity, temperature, ionic
concentration in liquid...). Furthermore, micro-manipulating
systems are limited in mechanical arrangements and actuation
caused by the scale and traditionally require severe mainte-
nance and complex control procedures [17]. Therefore, auto-
mated micro-/nano-assembly systems are typically very ex-
pensive, aggravated by a reduced throughput.

In response to these specific requirements, CPPS con-
cepts represent a powerful instrument to boost micro/
nano-manufacturing. More intelligent systems based on
innovative information-centric frameworks [18] and ad-
vanced algorithms may analyze and select optimized
assembly operations and tools that are simulated in vir-
tual environments allowing faster setups for evolvable,
reconfigurable, and more flexible manufacturing system.
The digital-twin (DT) [19] concept is a virtual represen-
tation of a physical system and is composed by multi-
model simulations for real-time prediction, optimization,
monitoring, and control. DT stands for an effective tool
to cope with undesirable and unpredictable behaviours
in systems with high complexities [20]. Collaborative
operations with human operators [21] [22] will be
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enabled for specific assembly operations [23], combin-
ing the advantages of both actors (humans and robots)
and reaching higher efficiencies by taking advance of
virtual reality (VR) and augmented reality (AR) technol-
ogies. On the other hand, the Industrial Internet of
Things (IIoT) [24] promises multiple devices connected
to the Internet and aims at integrating operational data
to the cyber system to achieve smart behaviours. The
introduction of software agents and multi-agent systems
(MAS) in manufacturing [25] [26] allows the deploy-
ment of these complex systems aiming at autonomy
and modularity features in control activities, since
agents represent fundamental processing units with ad-
vance computational capabilities. These context-aware
systems will allow manufacturing systems to behave in
a more autonomous manner with self-x capabilities (i.e.
self-configuration, self-organization, self-learning).

This work reviews the main solutions available nowadays
to implement a Cyber-Physical Production System for the
micro-/nano-assembly of devices. “Cyber-Physical
Technologies Towards Micro-/Nano-assembly” exposes the
main solutions and methods to deploy a CPPS in the micro/
nano-manufacturing context; then, “Conclusions” draws con-
clusions and some considerations regarding the CPS inclusion
level in this industrial field, the research work done, and future
steps.

Cyber-Physical Technologies Towards
Micro-/Nano-assembly

Figure 1 shows a conceptual scheme of a CPPS applied
to micro-/nano-assembly operations: micro/nano-
components (i) are manipulated following the most sat-
isfactory strategy computed by using different models
(i1). The whole sequence is controlled and optimized
by the system (iii) to assembly the final micro/nano-
device (iv). Information and raw data, from either the
physical world or historical database, are available for
the use along the whole process (v). Human operators
may contribute to the system in how to act or by val-
idating the whole manipulation and assembly operations
(vi).

The deployment of CPPS is accomplished by the use of
key enabling technologies and methods from an application-
driven analysis, which sometimes are difficult to establish or
materialize in a physical system. For that reason, these en-
ablers have been classified according to their different deploy-
ment levels in a micro-/nano-assembly application:

A. Sensing methodologies for real-time data collection by
using advanced vision-based systems and sensors.
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Fig. 1 Premises of using Cyber-Physical Production Systems (CPPS) in micro-/nano-assembly operations, by the combination of physical (green) and

computational (blue) resources

B. Models and algorithms for autonomous gripping in-
clude physical models and algorithms for autonomous
micro/nano-object detection and gripping. Sophisticated
calibration methodologies are also required to meet high-
accuracy requirements of vision-based systems.

C. Autonomous assembly operations based on vision track-
ing systems, complex assembly sequences, models, and
algorithms using multi-robot collaborations.

D. Human rolein assembly and human-robot interactions.
Human intervention is boosted using VR/AR systems for
teleoperating micro-/nano-assembly systems, direct col-
laboration and cooperation in assembly tasks between
human operators and robots with the inclusion of distrib-
uted teams using Internet connections.

E. Advanced frameworks and control architectures based
on Evolvable Production Systems (EPC), digital twins
(DT), and multi-agent systems (MAS) comprehend all
aforementioned methods and technologies, allowing al-
gorithm executions for real-time analysis reaching intelli-
gent behaviours (self-configuration, self-organization,
self-diagnostic, self-learning behaviours).

Figure 2 represents how the abovementioned concepts can
be actually deployed in a robotic cell for micro-assembly
manufacturing. The collaborative work cell, inspired by the
work presented in [27], is composed by a precision manipu-
lator and a collaborative robot, guided by different vision sys-
tems and controlled by a digital-twin framework.

The following sections describe in more detail each cate-
gory, focusing on the research works found enabling each of

the abovementioned aspects of CPPS for micro-/nano-assem-
bly operations.

Sensing Methodologies for Data Collection

Real-time sensing and processing of physical data has a major
role in CPS systems, especially for an accurate and effective
execution of the digital twin and a correct decision-making.
Due to the care required during micro-manipulation, there is
an extreme necessity of developing accurate and reliable
methods for measuring forces at the micro-scale [28], which
represent a very complex process as a consequence of the
difficulty to fabricate and calibrate physical sensors.
Additionally, force sensing at the micro-scale represents a
challenge in terms of sensor resolution, sensitivity, range of
work, etc. Therefore, vision systems are used to force mea-
surements despite its challenging requirements in terms of
resolution, magnification, limited field-of-view, and depth of
field. Among the approaches developed, the most common
are [28] as follows: (i) strain gauge-based; (ii) piezoresistive;
(iii) capacitive; (iv) piezoelectric; (v) piezomagnetic; (vi) op-
tical; (vii) vision-based.

Vision-based methods are widely used also for indirect
feedback by comparison of the deformation under the applied
loads and the physical model. For example, in [29], a vision
system is presented for real-time force feedback providing
sub-uN level force resolution in three dimensions. In [30],
the control of a mobile manipulation micro-robot is achieved
exploiting vision-based force sensing capabilities in the range
0-20 uN and with a resolution of 1.5 uN in real time. On the
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Fig. 2 Deployment of a Cyber-Physical Production System (CPPS) for
micro-/nano-assembly operations. The diagram represents the physical
deployment and its cyber counterpart: vision-based and sensing-based
methodologies to measure forces (A), advanced gripping strategies by

other hand, in [31], a piezoelectric-driven micro-gripper is
equipped with strain gauges capable of measuring either ap-
plied micro-forces or displacements by simulating its behav-
iour with finite elements methods. In [32], bimorph piezoelec-
tric strips help in manipulation tasks, and force is measured by
first characterizing the behaviour and the deflection of the
tweezer’s fingers.

Models and Algorithms Towards Adaptable Gripping
Operations

The complexity of gripping operations lies in the high variety
of components to be assembled and the high accuracy and
fineness required. To face with these issues, not only an accu-
rate physical system is required, but also a reliable and adapt-
able cyber system based on the analysis of the several different
gripping strategies and physical models.

In order to achieve robustness during the manipulation
(gripping or release phase) of micro/nano-objects, it is impor-
tant to understand the physical interactions between the object
and the gripper. Early works theoretically modelled micro-
force interactions (and specifically impact and contact forces)
to simulate them in virtual environments [33]. Other strategies
use compliant micro-grippers to avoid damages of micro-
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components [32] or developed specific designs based on con-
stant force gripping mechanisms [34].

Later researches introduced vision recognition of micro/
nano-components and learning algorithms applied to recogni-
tion and tracking of micro-objects [35] presents a complete
review on learning-based approaches to perform general grip-
ping operations at the macro-scale. To enhance dexterity and
optimize the grasping trajectories, authors in [36] [37¢]
exploited physical models of grasping forces and pull-off
forces during micro-manipulation operations using search al-
gorithms for a real-time application which computes the grip-
ping trajectory in less than 0.1 s. van Vuuren JJ et al. [38]
propose a learning-based methodology for identifying novel
objects and evaluating different candidate grasping strategies
for an optimal grasping and handling which might be applied
to the manufacturing of consumer electronic products.
Learning methods may be used as well to perform the manip-
ulation of flexible objects based on deformation models of
elastic behaviours [39], enabling the system in real-time.

Advanced calibration methods allow a higher accuracy of
micro-/nano-manipulation systems when working with
vision-based systems. Xing et al. [40] propose an active cali-
bration method to map from the relative motion of the multiple
robot manipulators to the image coordination changes at the
micro-scale, achieving high precision during assembly
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operations of irregular objects. The research also applies the
method in positioning, tracking, and motion optimization on a
micro-assembly platform. Shao et al. [41] introduce a calibra-
tion method for orientation alignment of components, includ-
ing image coordinate system calibration, based on transfer
matrix models. In [42], an efficient calibration method is pre-
sented which achieves high accuracy and low end-effector
error for micro-manipulation and assembly tasks by comput-
ing the rototranslation matrix between the different systems.

Autonomous Systems for Assembly Operations

Autonomous behaviours help with complex assembly se-
quences in large ranges of motion while maintaining high-
accuracy positioning requirements. Moreover, autonomous
reconfigurable abilities may be achieved by implementing
self-learning techniques and analyzing past assembly config-
urations, reaching higher effectiveness and efficiency during
setup operations which are especially important to maximize
throughput rates.

Assembly planning algorithms to perform autonomous as-
sembly operations are based on shape recognition techniques
of micro-objects. A matching algorithm was applied in [43],
based on shape recognition for micro-assembly, allowing sta-
bility, high recognition efficiency (97% in 58.6 ms in aver-
age), and accurate positioning (93% in 20.1 ms in average) of
the components. In [44], a sequential function chart was im-
plemented in order to achieve automated procedures for mi-
cro-assembly, obtaining relatively more complex micro-
assemblies by the system introduced lately by the same au-
thors in [45]. This last work introduces a vision feedback
strategy based on a real-time visual tracking algorithm used
by the association of 2D features taken from images and their
correspondence in the CAD model for the automation of as-
sembly. A similar closed-loop control strategy is presented in
[46] in which the 3D CAD is also used to present a complete
description of the observed scene, including the effects of
occlusion, for a 6-DOF tracking in real time. The works of
Venkatesan et al. [47] and Venkatesan and Cappelleri [48] are
based on sub-assembly sequence generation to find each op-
timal trajectory by a learned algorithm. Kim et al. [49] present
a dexterous and fast micro-hand (1 mm/s) system used for a
high-speed (100-pum spheres in 800 ms and 1.54 mm in 13 s)
and precise assembly method at a large distance (13 mm) by
implementing automatic releasing and error recovery system.

As an evolution to accomplish more working area, more
DOF, or more stable assembly operations, a multi-mobile mi-
cro-manipulation system may be implemented. In [17], a
multi-mobile micro-manipulation system is developed, which
is capable of performing multiple robotic micro-assemblies by
the cooperation of different manipulation systems, saving en-
ergy space and resources in industrial environments.
Furthermore, in [50] a 16 magnetically driven milli-robot

platform (288 x 288 mm) has been developed to assemble
carbon fibre rods, liquid adhesives, surface mount compo-
nents (SMC), fibre glass sheets, and micro-components. In
[51], a micro-robot-based micro-assembly sequence planning
is presented by the optimization of assembly flexibility and
reorientation numbers as the object function. The hybrid algo-
rithm combines the idea of particle swarm (PS) optimization
and ant colony optimization algorithms (ACO), requiring
some previous offline, non-autonomous work.

Introducing the Human Factor in Micro-/Nano-
manufacturing

Despite the continuous search for more autonomous systems
that do not require human interventions, some specific tasks
will still require a human-in-the-loop approach, for monitor-
ing purposes or due to the human ability to adapt to unfore-
seen perturbations or the high complexity of assembly opera-
tions [21] [22] [23]. For that reason, human role in
manufacturing gains importance as a more natural interaction
is required to take advantage of both actors [8]. From an op-
erational point of view, the last developments in Human-
Robot Collaboration (HRC) strategies improved the active
role of operators in automatic assembly operations performed
by robots and normally applied at the macro-scale. Human-
robot interactions (HRI) may be classified as follows [52]: (1)
coexistence, (ii) interaction, (iii) cooperation, and (iv) collab-
oration. Therefore, common control approaches are catego-
rized in [52] [53] (a) tracking, understanding, and predicting
real-time human motions in dynamic environments; (b) pre-
dictive and reactive strategies in collision detection for control
adaptation and reaction; and (c) planning and adapting mo-
tions and tasks in real time.

To improve these interactions in complex environments,
other approaches focus on developing cognitive abilities of
these systems which consist in appropriate models and repre-
sentations of the context surrounding the interaction [54].
Researches in this area focus on (i) cognition systems applied
to robots (symbolic and spatial cognition); (ii) the interactions
itself (dialog, action, intention, control and action planning
models); and (iii)) human partner cognition (mental models
and social cognition). DT represents a perfect framework to
orchestrate, execute the models, and analyze these collabora-
tions by performing assembly simulations in a virtual environ-
ment [55].

VR devices are exploited for assembling complex hybrid
MEMS devices by teleoperation [56] [57], for assembly plan-
ning [58] [59] and teaching purposes [33]. An important im-
provement of manufacturing industry is the development of
technologies that enables a collaborative process involving
distributed teams of engineers. In this context, authors in
[60] outline the convenience of VR systems combined with
web-based technologies, in which VR technologies enable
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engineers to study assembly sequences automatically generat-
ed for micro-assembly processes as an answer to a globally
changing customer requirements of micro-devices. For a com-
plete immersion of operators in the virtual environment,
Chiou and Kwon [61] include a grip force collection for re-
mote force feedback control, acting as a haptic system as de-
veloped in [62].

In order to achieve a complete collaboration between robot
and humans, a high-speed visual feedback to recognize human
movements is required. For this purpose, authors in [63] de-
velop a collaborative micro-assembly peg-in-hole system with
a 3dof manipulator and an expandable tracking area method
by composing the images taken from two cameras which
achieves a precision of about 10 um. To compensate opera-
tional errors of the VR system, Chang and Jau [64] present a
calibration strategy that measures the error between represen-
tative points in the virtual world and the charge-couple device
(CCD) visual system and corrects the projection matrix.

Finally, augmented reality (AR) and mixed reality (MR)
systems may complement and compensate the insufficient
information taken from physical vision-based manipulation
systems and put it available to operators, as well. For example,
in [65], an advanced MR system was used in manual or auto-
mated micro peg-in-hole operations, justifying an improve-
ment in efficiency and effectiveness of the micro-assembly
operations.

Evolvable and Modular Micro-/Nano-assembly
Systems and Control Strategies

CPPS deployment requires both a physical and a computa-
tional infrastructure to support all aforementioned systems
while achieving features as evolvability and adaptability,
maintaining system performance as well. To accomplish these
goals, different frameworks have been developed during the
last decade, from a more physical deployment to advance
control software architectures.

The concept of Evolvable Production Systems (EPS) [66]
[67] stands for multi-product lines with reusable equipment
for easy and fast changes of the physical modules, according
to production demands. Following the mini/micro-factory par-
adigm and the EPS concept, authors in [68] highlight the
closer link between the product design, the process sequences,
manufacturing processes, and module used, presenting the
Evolvable Micro Production System (EMPS) concept when
considering the strict specificities of micro-product
manufacturing. Some representative platforms are presented
as well, as the TUT Microfactory [69] and the microFLEX
[70].

On the other hand, information-centric approaches and
frameworks enable a more efficient manufacturing and auton-
omous behaviours. In [18] and [71¢¢], an advanced IoT-based
CPS framework that uses cloud-based principles for micro-
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device assembly in distributed working locations is presented.
These frameworks are capable of real-time data management
to directly feed the simulations on the cyber counterpart of the
CPPS allowing rapid data analysis and information
availability.

Realistic simulations of the physical world for accurate
manipulation are of great relevance, although very complex
at the micro-scale. In this direction, in [72¢¢], a DT-driven
control framework is presented as a base to implement these
simulations. The importance and the potential of digital-twin
technologies to meet high standards of accuracy and dimen-
sional performance required by assembly processes are
highlighted. The work implements a DT framework based
on the relationship between the physical and the virtual as-
sembly space to improve the operational methods, defining
different models (assembled part model, assembly process
model, and assembly performance model) to perform and op-
timize the entire assembly process.

Nonetheless, smart manufacturing still requires
decentralized control structures based on intelligent entities.
As a solution, the concept of agents was introduced,
representing fundamental processing units that build systems
with cognitive capabilities. Early researches addressed the
management and control of modular systems developing stan-
dardized methods and effective tools based on multi-agent
architectures for precision assembly systems [73]. However,
only few tackled the specific control requirements that micro-
assembly systems present. Gendreau et al. [12] presented a
method for designing a control architecture which allows the
system to adapt its organization structure and its control strat-
egy, based on two complementary approaches coming from
functional analysis and technological constraints of micro-
components. A robotic station is presented which is able to
teleoperate micro-assemblies and perform pick-and-place op-
erations of objects sized around 40 pum. Another modular
system was presented in [69] from the environmental, eco-
nomic, and social perspectives.

Conclusions

This work analyzed the research trends in micro-/nano-assem-
bly operations from the perspective of a Cyber-Physical
Production Systems (CPPS) implementation. CPPS represents
a powerful context for manufacturing to meet current market
requirements by combining computational and physical tools
and methods in different domains. However, a common
framework and a holistic approach, including the sustainabil-
ity asset, is still missing [74], thus limiting its robustness and
industrial applicability, at all manufacturing levels.

Some advances have been achieved in the micro-/nano-
manipulation domain showing the potential of CPPS ap-
proaches, especially in the context of distributed systems
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and VR environments by the realization of cyber-physical
frameworks. They represent a solid foundation to continue
developing more sophisticated and precise systems for
micro/nano-manufacturing based on multi-agent-based con-
trol architectures, advanced algorithms, and realistic simula-
tions. Smart features and self-x behaviours will face with the
problem of evolvability in the form of autonomously
reconfigurable and collaborative modules that allow an opti-
mal micro/nano-production with higher throughput.

Lastly, being the role of human operators still crucial in this
manufacturing field, it is interesting to develop solutions for
cooperative and collaborative operations, i.e. for planning
and/or assembly micro-/nano-operations. The intervention
might be seen not only as a supervisor, but also as a collabo-
rative workmate, exploiting human-robot interactions to take
advantage of both the human dexterity and flexibility and the
reliability and precision of the robots.
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