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A B S T R A C T   

Radiology reports are of core importance for the communication between the radiologist and clinician. A 
computer-aided radiology report system can assist radiologists in this task and reduce variation between reports 
thus facilitating communication with the medical doctor or clinician. Producing a well structured, clear, and 
clinically well-focused radiology report is essential for high-quality patient diagnosis and care. Despite recent 
advances in deep learning for image caption generation, this task remains highly challenging in a medical setting. 
Research has mainly focused on the design of tailored machine learning methods for this task, while little 
attention has been devoted to the development of evaluation metrics to assess the quality of AI-generated 
documents. Conventional quality metrics for natural language processing methods like the popular BLEU 
score, provide little information about the quality of the diagnostic content of AI-generated radiology reports. In 
particular, because radiology reports often use standardized sentences, BLEU scores of generated reports can be 
high while they lack diagnostically important information. We investigate this problem and propose a new 
measure that quantifies the diagnostic content of AI-generated radiology reports. In addition, we exploit the 
standardization of reports by generating a sequence of sentences. That is, instead of using a dictionary of words, 
as current image captioning methods do, we use a dictionary of sentences. The assumption underlying this choice 
is that radiologists use a well-focused vocabulary of ‘standard’ sentences, which should suffice for composing 
most reports. As a by-product, a significant training speed-up is achieved compared to models trained on a 
dictionary of words. Overall, results of our investigation indicate that standard validation metrics for AI- 
generated documents are weakly correlated with the diagnostic content of the reports. Therefore, these mea-
sures should be not used as only validation metrics, and measures evaluating diagnostic content should be 
preferred in such a medical context.   

1. Introduction 

The written radiology report is the most important means of 
communication between a radiologist and the referring clinician and is 
essential to high-quality patient care [1]. Radiologists wish to produce 
reports having an appropriate construction, clarity, and clinical focus. 
However, in daily radiology practice, the report generation task falls 
towards the end of the radiology workflow, and is a time-consuming and 
error-prone task. Fig. 1 shows the impression and findings sections of a 
radiology report. The impression section is a single sentence summary, 
while findings describes technical observations in detail of both normal 
and abnormal characteristics in the image. It consists of sentences 
covering various aspects such as heart size and lung opacity; any 

abnormality appearing at lungs, aortic and hilum; and potential diseases 
such as pneumothorax and consolidation [2]. 

A computer-aided radiology report system can assist radiologists to 
generate good reports and decrease their workload. Despite recent ad-
vances in deep learning for image caption generation, automated gen-
eration of radiology reports remains a challenging task. In particular, 
assessment of the quality of an AI-generated radiology report is highly 
domain-dependent. The performance of report generation methods is 
mainly assessed using conventional quality metrics for natural language 
processing methods [3–5]. However, the goodness of a radiology report 
is intrinsically linked to its diagnostic content, and it is not clear whether 
there is a correlation between text-based metrics and the quality of the 
diagnostic content of a generated report. 

* Corresponding author. 
E-mail addresses: zbabar@cs.ru.nl (Z. Babar), tvanlaarhoven@cs.ru.nl (T. van Laarhoven), elenam@cs.ru.nl (E. Marchiori).  

Contents lists available at ScienceDirect 

Artificial Intelligence In Medicine 

journal homepage: www.elsevier.com/locate/artmed 

https://doi.org/10.1016/j.artmed.2021.102075 
Received 25 February 2020; Received in revised form 5 February 2021; Accepted 7 April 2021   

mailto:zbabar@cs.ru.nl
mailto:tvanlaarhoven@cs.ru.nl
mailto:elenam@cs.ru.nl
www.sciencedirect.com/science/journal/09333657
https://www.elsevier.com/locate/artmed
https://doi.org/10.1016/j.artmed.2021.102075
https://doi.org/10.1016/j.artmed.2021.102075
https://doi.org/10.1016/j.artmed.2021.102075
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2021.102075&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Artificial Intelligence In Medicine 116 (2021) 102075

2

Therefore, in order to comparatively assess the diagnostic quality of 
generated radiology reports, we introduce a new validation measure. We 
assume a set of diagnostic tags is given (provided by an external source), 
which are associated to each image in the training and test set. These 
diagnostic tags are not used for training the report generator but to 
assess diagnostic quality of generated reports. To this aim, tags are used 
as class labels of reports, and used to train a probabilistic model. The 
resulting model estimates the diagnostic score of a report by its capa-
bility to correctly predict the diagnostic tags of the corresponding image. 
The application of this model to reports generated from test images 
provides a diagnostic measure, that we call the diagnostic content score. 
Interestingly, this measure can be also used to quantify the diagnostic 
content of manually generated reports. 

Most methods for report generation are based on deep learning and 
use an encoder-decoder architecture stemming from machine trans-
lation [6]: an image is transformed into visual features by the encoder 
and the decoder transforms visual features into a textual description of 
that image. The textual description consists of a sequence of elements 
from a given dictionary. The dictionary used in all conventional methods 
consists of the set of words occurring in the reports of the training data. 
However, radiologists tend to use a well-focused vocabulary of ‘stan-
dard’ sentences to describe their findings [7], with ongoing standardi-
zation initiatives favoring this trend [8,7]. Therefore, it is interesting to 
investigate the impact on the diagnostic quality of a dictionary of sen-
tences instead of a dictionary of words. 

We perform a comparative analysis of the use of word- and sentence- 
based dictionary on two recent attention-based models that automati-
cally learn to describe the content of images [9,2]. We use the publicly 
available Indiana U. Chest X-rays dataset from the Open-i image 

collection [10]. 
We show experimentally that using a dictionary of sentences instead 

of a dictionary of words, as all current image caption generation 
methods do, does not significantly change the quality of the generated 
reports, both in terms of text-based metrics and in terms of diagnostic 
content. As a by-product, a significant training speed-up is achieved 
compared to models trained on a dictionary of words. 

Results of our experimental investigation also show that validation 
metrics for natural language processing methods and our diagnostic 
content validation metric are only weakly correlated. Therefore, these 
measures should be not used as the only validation metrics, and metrics 
evaluating diagnostic content should be used as well in medical 
contexts. 

Our contributions toward a computer-aided radiology report system 
can be summarized as follows: (a) an external quality measure to assess 
the diagnostic content of AI-generated radiology reports; (b) an in-depth 
comparative analysis of the proposed quality measure and standard 
quality metrics for natural language processing methods; (c) extensive 
experiments on a publicly available dataset, using two machine learning 
methods for text generation from images (a popular image caption 
method and a recent method specifically developed for radiology report 
generation), and two types of dictionaries, the standard word-based 
dictionary and a sentence-based one. 

2. Related work 

In recent years many techniques have been proposed to address the 
task of automatic image captioning. Initial models were mainly based on 
feed-forward neural networks [11] and consisted of multimodal archi-
tectures which could be conditioned on other modalities. Later on, 
feed-forward neural networkswere replaced by recurrent neural net-
works, see e.g. [12]. 

The release of the Microsoft COCO dataset [13] stimulated research 
on caption generation from images. Significant progress was achieved 
especially through the introduction of models that combined Convolu-
tional Neural Networks (CNN’s) with Recurrent Neural Networks 
(CNN-RNN’s) [14,9,15]. CNN-RNN’s were inspired by the 
encoder-decoder approach used in machine translation. Rather than 
translating text to text, a CNN-RNN translates an image to a text. The 
CNN is used as an encoder and an RNN as decoder, as described in the 
next section. 

2.1. Conventional techniques 

The first use of the encoder-decoder architecture for image 
captioning was in the Show and Tell method [14]. This method uses a 
deep CNN to extract features from an image, and then uses these features 
as an input for the first time-step of a Long Short Term Memory (LSTM) 
network. In [9] a more involved model called Show, Attend and Tell was 
proposed, which introduces two attention-based mechanisms called soft 
attention and hard attention. These mechanisms mimic the human eye’s 
characteristic to switch focus between different parts of an image. 
Donahue et al. [16] also proposed an encoder-decoder model which uses 
a recurrent CNN. At each time-step, the model takes a different variation 
of the same image as an input. The resulting model is also applicable to 
generate descriptions of videos. 

2.2. Specialized techniques 

Compared to automatic image captioning, generating a textual 
description for radiology images is a more challenging task. Therefore, a 
number of specialized computational methods have been introduced. 

Fig. 1. Example of impression and findings sections of a radiology report 
(Indiana U. Chest X-ray dataset). xxxx’s are wrongly removed keywords due to 
de-identification. 
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In [17] a machine learning method was introduced for annotating 
chest X-rays with Medical Subject Headings annotations. This method 
involves a CNN for classifying X-ray images into given disease-based 
classes, RNN models for learning representations of the context of 
disease-based classes, and a cascade model which combines image and 
context representations to generate annotations. In [18] an unsuper-
vised procedure, called Looped Deep Pseudo-Task Optimization, was 
introduced to discover disease-based classes of radiology images. The 
procedure starts from pseudo class labels derived from text reports, 
which ate fine-tuned by means of an iterative procedure. 

A hierarchical report generation approach was proposed in [19]: a 
CNN is used to learn visual features from images as well as for predicting 
their diagnostic tags, followed by a LSTM in combination with a 
co-attention mechanism to generate a textual report. This method relies 
on the availability of diagnostic tags at training time, and may generate 
reports containing repetitions. 

In [2] a recurrent generative model was introduced to generate both 
the impression sentence and the finding paragraph of a radiology report. 
This method makes use of global image features to generate the 
impression sentence of a report. Next, it uses the generated impression 
sentence together with local image features as input to generate the 
findings paragraph, in a sentence-by-sentence fashion. Although the 
method is reported to achieve good results on the IU chest X-ray dataset, 
it is not capable to generate sentences that did not already occur in the 
training set. This limitation is shared by the sentence-based dictionary 
approach we propose. In [20] a CNN-RNN-RNN based model was pro-
posed: a CNN is used to learn visual feature representations, which are 
fed to a RNN to generate a topic for each sentence. Next, an RNN uses 
topic and visual features to generate sequence of words. 

In [21] an enhanced encoder-decoder approach is used. In particular, 
the encoder is pre-trained with a large number of chest X-ray images to 
classify 14 common radiographic observations, fine tuned to extract the 
most frequent medical concepts from the X-ray images. 

Specialized (hybrid) Information Retrieval (IR) methods for radi-
ology report generation have been introduced. Although in our analysis 
we will use only machine learning baseline methods, we briefly sum-
marize two recent methods based on IR. 

In [22] a Knowledge-driven Encode, Retrieve, Paraphrase (KERP) 
method was introduced which reconciles traditional knowledge- and 
retrieval-based methods with modern learning-based methods. KERP 
employs an encoder module that transforms visual features into a 
structured abnormality graph by incorporating prior medical knowl-
edge; then a Retrieve module retrieves text templates based on the 
detected abnormalities; finally, a Paraphrase module rewrites the tem-
plates according to specific cases. 

In [23] a method called Hybrid Retrieval-Generation Reinforced 
Agent (HRGR-Agent) was proposed. This method considers sentences 
along with words to generate diagnostic reports. It uses a retrieval policy 
module to decide whether at a certain point it should retrieve a template 
sentence from a off-the-shelf database or invoke a generation module to 
generate a new sentence. 

2.3. Datasets 

Various publicly available datasets from the radiology domain have 
been introduced. In [24] a multilabel ChestX-ray8 dataset was released. 
This dataset was mainly used to classify and localize commonly occur-
ring thoracic diseases. Two other recent publicly available chest X-ray 

Fig. 3. Methodology: training using sequence of sentences.  

Fig. 2. Methodology: diagnostic content score.  
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datasets are MIMIC-CXR [25] and ChestXpert [26]. Unfortunately, 
radiology reports from these datasets are not directly accessible. The 
only publicly available radiology dataset we are aware of, containing 
images and radiology reports, is the Indiana U. Chest X-rays dataset from 
the Open-i image collection [10]. This dataset has been extensively used 
to test methods for radiology report generation, and will be used in our 
experimental analysis. 

2.4. Diagnostic quality measures 

Few diagnostic-based quality measures have been introduced. In [2] 
the so-called Keywords Accuracy (KA) was proposed which considers 
the ratio of the number of diagnostic keywords in the generated report to 
the number of all diagnostic keywords in ground truth report. Diagnostic 
keywords are diagnostically relevant terms extracted using a Medical 
Text Indexer (MTI). While the KA measure quantifies diagnostic content 
of a generated report by the fraction of relevant keywords it contains, 
the diagnostic score we propose uses the prediction of a probabilistic 
classifier built on training data consisting of reports with medical tags as 
their class labels. 

In [20] a clinical accuracy score based on the CheXpert labeler [26] 
is used. The CheXpert labeler involves extracting mentions from a list of 
observations from the impression part of radiology reports; a rule-base 
classifier is built to classify such mentions. Rules for mention classifi-
cation are designed on the universal dependency parse of the report. 
CheXpert is used to compute annotations of generated and ground truth 
reports on 14 different categories related to thoracic diseases and sup-
port devices, which are then used to compute accuracy, precision, and 
recall values. The rule-based classifier is constructed using a dataset 
whose characteristics are possibly different than those of the reports it is 
applied to when computing clinical accuracy, hence the resulting 
assessment could be biased. 

3. Methodology 

In order to assess the diagnostic quality of generated reports, we 
propose a new scoring measure called Diagnostic Content Score (DCS) 
(see Fig. 2). Also, we investigate the use of sentence-based dictionary 

instead of word-based dictionary to train a report generator model (see 
Fig. 3). Dictionary construction and text encoding are the prime differ-
ences between a sentence-based and word-based setting. As illustrated 
in the Fig. 4, a sentence-based text encoding is simpler than a word- 
based one. 

3.1. Diagnostic content score (DCS) 

Conventional evaluation metrics for text generation from images 
include BLEU, ROUGE, and METEOR [4,27,28] (see Section 4.3). To 
date, these are the most widely used tools in machine translation and 
summarization for evaluating how good a generated text is as compared 
to the ground truth one. Such metrics measure goodness in a generic 
context, independent of the application domain. They score a generated 
report only in terms of how well it matches the corresponding ground 
truth report. As such, they can miss important clinical information 
contained in the generated report. For example, “Heart is normal” and 
“Heart is not normal” are syntactically close but semantically very 
different sentences. Therefore, we propose to assess the clinical quality 
of radiology reports using an external source of information (see Fig. 2). 
We assume an external source of ground truth knowledge in the form of 
a set of diagnostic tags for each report, see an example in Fig. 15. These 
diagnostic tags are external knowledge because they are not used for 
training the report generator model. 

By considering tags as class labels associated to a report, we build a 
probabilistic model (on the training data) that predicts the class labels of 
a report. The probabilistic model is applied to the generated reports of 
the test set, and the model performance is used as quantitative estimate 
of the diagnostic quality of the generated reports. 

Specifically, for predicting tags of a report generated from images 
(from the test set), we train a multinomial Naive Bayes classifier on the 
ground truth reports and associated external tags (from the training set), 
using n-grams of words as features. Let w1,w2,⋯,wN be the words or n- 
grams that make up a report R. Then for each tag t, we compute ℙ̂(t =

1∣R), the probability that tag t is present in R, using Bayes rule as 

ℙ(t = 1∣R)∝ℙ̂(t = 1)
∏N

i=1
ℙ̂(wi∣t = 1), (1) 

Fig. 4. Word-based encoding vs. sentence-based encoding.  
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where ℙ̂(t = 1) is the empirical probability of a tag t, and ℙ̂(wi∣t = 1) is 
the empirical probability of reports that contain the word or n-gram wi 
among reports labeled with tag t. These empirical probabilities are 
estimated with Laplace smoothing, that is, as the count of reports with 
the given tag and of the given word in the training set, plus 1, normal-
ized to give a multinomial distribution. Similarly, we estimate ℙ̂(t =

0∣R), the probability of a tag being absent from report R, based on re-
ports in the training set that do not have that tag. 

Then, for each tag t we predict that tag to be associated to the report 
if ℙ̂(t = 1∣R) > ℙ̂(t = 0∣R). We use the F1 score to compare the set of 
predicted tags to the true diagnostic tags associated with that report. We 
call this the diagnostic content score (DCS) of a report R: 

DCS(R) = 2
|T ∩ T̂ |
|T| + |T̂ |

,

where T is the set of true tags of R, and T̂ is the set of predicted tags. This 
score is a number between 0 and 1, where 1 means that the predicted 
tags are identical to the true tags, and 0 means that the sets are 
completely disjoint. We define the DCS over a set ℛ of reports as the 
average DCS over the reports in ℛ: 

∑
R∈ℛDCS(R). 

3.2. Sentence-based automated image report generation 

In order to exploit the standardization of reports, instead of using a 
dictionary of words, as current image captioning methods do, we 
investigate the use of a dictionary of sentences. The assumption un-
derlying this choice is that radiologists use a well-focused vocabulary of 
‘standard’ sentences, which should suffice for composing most reports. 

Fig. 3 shows the training procedure for radiology report generation 
models using a dictionary of sentences. Here there is no need for pre- 
processing such as stop words removal, punctuation removal, etc. Dic-
tionary construction and text encoding are the prime differences be-
tween this setting and the word-based setting. To construct a dictionary 
of sentences, the training reports are tokenized into sentences of the 
dictionary (Fig. 3). Fig. 4 shows the dictionary construction and text 
encoding. As illustrated in the figure, a sentence-based text encoding is 
simpler than a word-based one. 

We use two state-of-the-art machine learning baseline methods to 
investigate the impact of a dictionary of sentences. The first one is the 
popular attention-based CNN-LSTM model (Show, Attend, and Tell) [9]. 
The second baseline is the Multimodal Recurrent Attention model [2], a 
specialized method to automatically generate radiology reports. 

We modify these baselines and consider their sentence-based dic-
tionary variants. This approach illustrated schematically in Fig. 3. 

3.2.1. Sentence-based show, attend, and tell model (SAT): 
In a medical context, the goal of SAT is to generate a radiology report 

R given an input image X. To generate the report, an encoder-decoder 
architecture is used. The encoder generates visual features from the 
image. As in [9], we use the pre-trained deep CNN VGG-19 as encoder. 

For the decoder, we modify and use the attention mechanism pro-
posed in [9], which uses the encoded image as input for an LSTM. Here, 
we consider a dictionary of sentences instead of words, so at time t a 
sentence St instead of a word is output. At each time-step, this network 
focuses its attention on a specific part of the input image. 

Formally, in our setting a report of length L consists of sentences S1, 
S2, ⋯ , SL. Each of these sentences is drawn from a dictionary of K 
different possible sentences that can occur in radiology reports. The 
likelihood of the whole report is 

ℙ(R∣X) =
∏L

i=1
ℙ(Si∣S1,⋯, Si− 1,X). (2)  

3.2.2. Sentence-based multimodal recurrent attention model (MRA): 
In MRA, we extract local and global features of an input image as 

described in [2], using the pre-trained deep CNN ResNet152. 
For the decoder part, MRA uses a hierarchical approach to generate 

each sentence which comprises a sequence of words. MRA recurrently 
generates each sentence using the encoded image and the previous 
sentence as inputs. 

Formally, each sentence is generated separately, depending only on 
the previous sentence and on the image X. This means that the likelihood 
of a sentence Si = [w1,w2,⋯,wni ] of length ni is 

ℙ(Si∣X) =
∏ni

j=1
ℙ(wj∣X, Si− 1,w1,⋯,wj− 1). (3)  

The sentences together form the report of length L, which has a 
likelihood 

ℙ(R∣X) =
∏L

i=1
ℙ(Si∣X, Si− 1). (4)  

In a sentence-based model, the likelihood of a sentence in terms of its 
constituent words is replaced by a direct estimation of the likelihood 
based on a dictionary of sentences. This leaves Eq. (4) to describe the 
likelihood of a particular model. 

4. Experiments 

4.1. Data 

We conduct experiments on the Indiana University (IU) Chest X-Ray 
collection [10], consisting of radiology diagnostic records of 3999 pa-
tients. Each record contains one or more chest X-ray images along with a 
corresponding textual report. Each report consists of four sections: 
impression, findings, comparison, and indication. As in [19], we use the 
concatenation of impression and findings as the target report to be 
generated. 

Each report in the collection is associated with a subset of diagnostic 
tags. In total 1600+ unique tags are given (frequence of tags given in 
Fig. 5). On average a report is associated with 3.5 tags. 

Fig. 5. Number of occurrences of diagnostic tags (excluding tag ‘Normal’) in 
the training data. 
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Almost each report in the collection is associated with two images: a 
frontal and a lateral view. 

These images can be used independently, as done in [19], or jointly, 
as done in [2]. We consider the latter approach, which directly preserves 
the relatedness of the two views. 

Originally, SAT processes one image at a time. To be able to process a 
pair of images together, we use a modified encoder which extracts fea-
tures for each of the image views and concatenate them. 

We consider only records containing two image views and complete 
textual report. After this filtering, we get a total of 2775 records (each 
consisting of a pair of images and associated medical report). 

For each report, we convert all tokens to lowercase and remove all 
non-alphabetic tokens. 

We maintain two separate dictionaries, one of words and one of 
sentences. We apply word-based and sentence-based tokenization to 
create these dictionaries. 

The dataset has a total of 1933 unique words and 5100 unique 
sentences. 

4.2. Experimental setup 

We follow the same experimental setup as in [2]: out of 2775 records 
we randomly select 250 samples to form the test set and use the 
remaining data for the training. We repeat the split of the data into 
training and test set 5 times, and average the performance on the test 
sets of the models trained on the corresponding training sets. All models 
are trained for 60 epochs using a batch size of 16. 

We have used existing implementations of SAT1 and MRA2, which 
have been adapted for the sentence-based setting. 

For the word-based SAT model, we use 110 time-steps, since nearly 
all (over 99%) of the reports in the training data have fewer than 110 
words (see Fig. 6). For the sentence-based SAT model we use a limit of 14 
time-steps, which covers over 99% of the reports in the training data. 

For the word-based MRA model, we use 40 time-steps to generate a 
single sentence. This is the maximum length for any sentence. For the 
sentence-based variant of MRA, it takes only one time step to generate a 

single sentence, excluding starting and end token. 

4.3. Validation 

We assess the performance of the models using conventional vali-
dation measures for text analysis including BLEU, ROUGE and METEOR 
as well as diagnostic-based measures. 

BLEU [4] is a precision-based metric that counts how many n-grams 
of the generated report are in the ground-truth reference(s). BLEU has a 
correction to penalize reports that repeat n-grams. In fact, n-grams in 
system outputs cancel n-grams references when counted. The BLEU 
metric favors short outputs, and all n-grams are equally weighted. 

ROUGE [28] is a recall-based metric that counts how many n-grams 
in references are covered by the system outputs. The most interesting 
version of this metric is the one that takes into account the longest 
sub-sequence in common between references and system outputs. The 
ROUGE metrics favor long system outputs, which may contain a lot of 
useless information. As with BLEU, all n-grams are weighted equally. 

METEOR [27] is the harmonic mean between precision and recall 
over unigrams with a penalizing factor. METEOR is computed after the 
application of an alignment between references and system outputs. 
Hence, the penalizing factor is used for fragmentation, that is, a count of 
the unigrams which are close in the reference and far in the system 
output. 

As diagnostic assessment measures, we use the DCS score introduced 
in Section 3.1, to quantify the diagnostic relevance of sentence-based 
and word-based generated reports to the given diagnostic tags. 

Fig. 6. Histogram of the length of reports in the IU Chest X-ray dataset.  

Table 1 
Evaluation of word- and sentence-based methods based on conventional metrics. (Standard deviation values are shown with ’±’).  

Algo Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE 

SAT Two-Images 
Word-based 0.35 ±0.01 0.22 ±0.01 0.15 ±0.00 0.10 ±0.00 0.16 ±0.00 0.29 ±0.01 
Sentence-based 0.35 ±0.01 0.23 ±0.02 0.16 ±0.02 0.12 ±0.02 0.16 ±0.01 0.27 ±0.01  

MRA Two-Images 
Word-based 0.33 ±0.02 0.21 ±0.02 0.14 ±0.02 0.09 ±0.01 0.16 ±0.01 0.28 ±0.01 
Sentence-based 0.35 ±0.01 0.21 ±0.01 0.14 ±0.01 0.09 ±0.01 0.15 ±0.01 0.28 ±0.01  

Table 2 
Evaluation of word- and sentence-based methods based on the CheXpert labeler.  

Algo Approach Accuracy Precision Recall F1- 
score 

SAT Two-Images 
Word-based 0.86 0.22 0.21 0.21 
Sentence- 
based 0.88 0.23 0.23 0.23  

MRA Two- 
Images 

Word-based 0.87 0.25 0.26 0.25 
Sentence- 
based 0.86 0.20 0.21 0.20  

1 https://github.com/yunjey/show-attend-and-tell  
2 https://github.com/wangleihitcs/MedicalReportGeneration 
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As in the other validation metrics, we consider a range of n-grams 
(n=1,2,3, and 4). We refer to these scores as DCS-1 up to DCS-4. Note 
that since this score is based on tags and not on text comparison, the 
ground truth reports will not automatically get a score of 1. We also 
looked at the DCS of the ground truth reports, which represents an upper 
bound on the diagnostic content of generated reports. Also, we consider 
diagnostic metrics based on the CheXpert labeler [26,20]: accuracy and 
other standard classifier performance metrics are computed by 
comparing the predicted annotations of generated reports with the 
predicted annotations of the corresponding ground truth reports, where 
prediction is performed with the CheXpert labeler. 

4.4. Results 

Table 1 contains performance scores based on conventional metrics, 
for SAT and MRA with word- and with sentence-based dictionary. 
Overall results indicate similar performance of sentence-based and 
word-based methods. Sentence-based SAT performs better than word- 
based SAT when BLEU 2-4 are considered. In terms of ROUGE word- 
based SAT is slightly ahead but not significantly different from its 
sentence-based variant (p-value from Wilcoxon test >0.05). For MRA, 
results show similar performance of word- and sentence-based methods, 
except for BLEU-1, where sentence-based MRA performs better than the 
word-based variant. However, these differences are not significant (p- 
value from Wilcoxon test >0.05). 

Table 2 contains performance results of word- and sentence-based 
SAT and MRA, computed using CheXpert labeler evaluation metrics. 
According to these diagnostic metrics, sentence-based SAT performs 

better than its word based variant, while word-based MRA performs 
slightly better than its sentence based variant. 

Fig. 7 shows bar plots with DCS scores (for different n-grams) of 
ground truth test set reports, word-based generated reports, and 
sentence-based generated reports for SAT and MRA. Results indicate 
that ground truth test reports have much higher scores than generated 
reports for both sentence- and word-based SAT and MRA. Also, 
sentence-based SAT performs better than its word-based variant. Dif-
ferences between MRA word- and sentence-based variants are marginal, 
with the word-based variant being slightly better. 

We applied the Wilcoxon test to assess the significance of different 
DCS performance between the considered models. We find that for SAT 
the difference between the word-based and sentence-based models is not 
significant (p-value >0.2 for DCS n-gram variants). 

Differences of DCS’s results between word- and sentence-based MRA 
are not significant for DCS-1 and DCS-2 (p-values >0.1), but become 
significant when longer n-grams are used (p-value 1.5 × 10− 2 for DCS-3 
and 0.12 × 10− 3 for DCS-4). 

5. Discussion 

We perform a qualitative and quantitative comparison of DCS and 
other metrics, and analyze the role of the (specific) classifier used in 
DCS. Next, we discuss advantages of sentence-based report generation 
models. 

Fig. 8. Average specificity of the diagnostic tag classifier on of ground truth and generated reports. Where Specificity-1,2,3, and 4 are computed using 1,2,3, and 4 
grams respectively. 

Fig. 7. Average DCS of ground truth and generated reports. Where DCS-1,2,3, and 4 are computed using 1,2,3, and 4 grams respectively.  
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5.1. Comparison between DCS and other metrics 

In Figs. 11 and 12, we see examples of word-based and sentence- 
based generated reports where the DCS value is 0 while BLEU values 
are relatively high. This phenomenon occurs because conventional 
metrics give the same weight to each word, even though adding or 
removing even a single word can completely change the overall diag-
nostic content of a report. On the other hand, DCS indirectly places a 
larger weight on the incorrect words (highlighted in italic in the Figures) 
since they change the meaning of the report. 

In Fig. 11 we see that overall the text is tilted towards “normal” 
except for the words “thoracic spondylosis” which point to a specific 
non-normal diagnosis. This is the only difference between the generated 
text and the ground truth. DCS detects this difference, classifies the 
report as non-normal, resulting in a DCS score of 0. 

A similar behavior occurs in the absence of a key sentence or phrase. 
In Fig. 12, we see that the sentence-based generated report is mostly in 
line with the ground truth reference text, which has tag “Cardiomegaly/ 
mild, Cardiomegaly”. But since the key phrase “mild Cardiomegaly” is 
missing, the generated report is classified as “normal” and gets a DCS 
score of 0. Instead, the BLEU score cannot capture the diagnostic rele-
vance of single parts of the report. 

In the examples we also see a disadvantage of DCS: it assumes very 

coarse-grained values, which are often equal to 0 or 1. DCS also focuses 
exclusively on text that is relevant for the diagnostic tags. That means 
that DCS can miss many other important aspects of the generated report, 
such as correct grammar, sentence structure and the detailed motivation 
for a report’s findings. 

To investigate more in depth the relation between DCS and other 
metrics, we have looked at their correlation. We computed Pearson’s 
correlation between each pair of metric values of generated test reports 
for word-based SAT. In Fig. 14, we see that DCS is only weakly corre-
lated with the conventional metrics, while these metrics are highly 
correlated with each other. DCS is weakly correlated also with CheXpert 
accuracy metric, and this metric has an even lower correlation with 
conventional metrics. Results for sentence-based SAT and for MRA are 
given in Section A. 

Overall, our experimental analysis indicates that neither conven-
tional metrics nor diagnostic quality metrics like DCS or CheXpert ac-
curacy can fully characterize the quality of a medical report. However, 
conventional and diagnostic-based metrics complement each other and 
cover different syntactic and semantic aspects of a radiology report. 

Diagnostic metrics like DCS have intrinsic biases induced by the 
specific method employed to extract relevant keywords/tags, and by the 
type of classifier (Naive Bayes for DCS, rule-based for CheXpert) and 
how it is trained (using the original dataset for DCS, using an external 

Fig. 10. Average precision of the diagnostic tag classifier on ground truth and generated reports. Where Precision-1,2,3, and 4 are computed using 1,2,3, and 4 grams 
respectively. 

Fig. 9. Average sensitivity of the diagnostic tag classifier on ground truth and generated reports. Where Sensitivity-1,2,3, and 4 are computed using 1,2,3, and 4 
grams respectively. 
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dataset and class labels for CheXpert). In particular, for DCS, a low score 
could be due to the bad performance of the (Naive Bayes) classifier used 
to compute DCS values, and not necessarily to the bad performance of 
the report generation model. To investigate this phenomenon, we show 
sensitivity, specificity and precision, of the Naive Bayes classifier over 
the ground truth reports in the test set. Sensitivity is computed as fol-
lows: first, locally for each ground truth report in the test set, as the 
fraction of actual tags present in the report that are correctly predicted 
as such; next, as the average over all reports’ sensitivities. Specificity is 
computed similarly, where for each ground truth report of the test set, 
the fraction of actual tags not present in the report that are correctly 
predicted as such is considered. To compute precision, for each report, 
the number of actual tags present in the report divided by the total 
number of tags labeled as belonging to that report is considered. Results 
are shown in Figs. 8–10. Although sensitivity and precision are overall 
much lower than specificity, due to the high majority of ‘normal’ re-
ports, the relatively higher performance of the classifier on ground truth 
reports, indicate that the report generator model is mainly responsible 
for the classifier performance as assessed by DCS, not the classifier 
employed to compute the DCS score. This is also substantiated by the 
relative agreement of evaluation results across different score metrics. 

Tag prevalence and DCS score values are related: tags with a very 
high prevalence get better DCS score. Tag “Normal” occurs in about 42% 
of the test data and yields an average DCS score of 0.88. While the rest of 
the tags has average DCS of 0.27. In Table A.3 we break down the DCS 
score for the most frequent tags: for all tags the performance of the 
classifier is much better on the ground truth reports compared to 
generated reports. In addition, the performance of the classifier on the 
ground truth reports is still reasonable for less frequent tags, but the 
classifier never produces these tags on generated reports. In a concrete 
case this could mean that the classifier is able to predict rare tags from 
the ground truth reports, while these true rare tags are not correctly 
predicted for the generated report. This indicates that the differences in 
DCS scores are mainly due to the quality of the generator, not to the 
classifier used to compute DCS. Fig. 13 shows one example where this 
happens. 

In order to assess whether the type of classifier used to define DCS 
affects the results, we computed DCS using other classifiers. Specifically, 
we considered Decision Trees, Random Forest, and KNN instead of Naïve 
Bayes. 

Results indicate similar performance trend across these classifiers. In 
particular, the relatively higher performance of these classifiers on 
ground truth reports (see Table A.4), further substantiates the central 
role of the report generator model, not of the classifier used to compute 
the DCS score. 

5.2. Sentence-based and word-based generated reports 

In order to analyze the impact of sentence-based dictionary on the 
generated reports, we compare sample reports generated by both 
sentence-based and word-based approaches. 

Fig. 15 shows the best and worst reports generated by the sentence- 
based SAT model, the corresponding ground truth reports and word- 
based generated reports. In the best case, the report generated by the 
sentence-based approach exactly matches the ground truth. For this 
example, the word-based generated report also looks good, but is less 
detailed than the ground truth. The worst sentence-based SAT generated 
report does not include any abnormal finding mentioned in the ground 
truth report. In this case the word-based approach generated the same 
report as the sentence-based approach. When looking at the best and 
worst reports according to the scores for the SAT word-based model, the 
situation is very similar, with the best word-based generated reports 
exactly matching the ground truth, and the worst reports missing 
important parts of the text contained in the ground truth. An example is 

Fig. 11. Example of a generated report with high BLEU scores. The generated 
report has an incorrect diagnosis, marked in italic, and it gets a low DCS. 

Fig. 12. Example of a sentence-based generated report with incorrect diag-
nostic content and low DCS, but with high BLEU scores. 
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included in the Appendix. 
An advantage of using a sentence-based dictionary is a drastic 

reduction in training time. We compared the running time of SAT and 
MRA word-based and sentence-based variants, using a GPU 
implementation. 

Fig. 16 (a) shows that for the sentence-based SAT model, training 
takes less than 0.05 seconds for a single batch (16 images) versus 0.30 
seconds for the word-based model. As a result, the sentence-based model 
takes around 10 minutes to train, while the word-based model takes 
almost 1.16 hours. For MRA results in Fig. 16 (b) show that the sentence- 
based variant is about three times faster than the word-based one. 

6. Conclusion 

In summary, in this paper we investigated the downsides of using 
conventional text-based validation metrics as the only measure to 

validate automatically generated radiology reports. Results of our 
extensive experimental analysis indicate that conventional metrics do 
not capture the quality of the diagnostic content of generated reports. 
We have shown that DCS has a low correlation with conventional text- 
based metrics such as the BLEU score. These results indicate that DCS 
capture other properties of a report, namely diagnostic content. On the 
other hand, low correlation of DCS and another recent diagnostic-based 
validation metric, indicates that results of these type of metrics depend 
on the way they are computed, for instance using the original dataset 
with given diagnostic tags (as in DCS) or an external dataset and 
different tags (as in CheXpert). 

Overall our investigation indicates the usefulness of both conven-
tional and diagnostic-based metrics. 

We have investigated the use of a sentence-based dictionary for 
radiology report generation methods and showed that a sentence-based 
dictionary yields results of similar quality as those obtained by using a 

Fig. 13. Ground truth test reports associated with a least frequent (top part) and most frequent (bottom part) tag and relative DCS’s.  

Fig. 14. Pearson correlation between DCS and other metrics for the word-based SAT method. Here, CheXpert represents F1-score computed on CheXpert based labels 
of generated report and ground truth report. 
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Fig. 15. The best (left) and worst (right) generated reports, according to BLEU-1 for the sentence-based SAT model.  
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word-based dictionary, and improves efficiency of the training process. 
A limitation of sentence-based dictionary is that it suffers from a 

similar drawback as [2], that is, it does not generate new sentences that 
have never appeared in the training set. Therefore, it relies on the 
assumption that the training set is sufficiently informative. 

Another limitation stems from the variability between sentences. 
Two similar sentences will be seen as completely different in a sentence- 
based dictionary, and a model might thereby miss related information. 
Because of the standardized terminology used by radiologists, this is not 
a big problem in practice, as also substantiated by our experiments. 
However, it might be possible to further improve the sentence-based 
approach by using pre-processing techniques to transform sentences of 
the training set into an informative and diverse dictionary, or even to use 
generative models to create a better dictionary of sentences. 
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Appendix A. Additional results 

Fig. A.17 
Fig. A.18 
Fig. A.19 
Fig. A.20 
Table A.3 
Table A.4 

Fig. 16. Comparison of training time (in seconds) of a single batch (16 samples) for the word- and sentence-based approaches.  

Fig. A.17. Correlation between DCS and other metrics for sentence-based SAT. 
Here, CheXpert represents F1-score computed on CheXpert based labels of 
generated report and ground truth report. 

Fig. A.18. Correlation between DCS and other metrics for word-based MRA. 
Here, CheXpert represents F1-score computed on CheXpert based labels of 
generated report and ground truth report. 

Fig. A.19. Correlation between DCS and other metrics for sentence-based 
MRA. Here, CheXpert represents F1-score computed on CheXpert based labels 
of generated report and ground truth report. 
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Fig. A.20. The best (left) and worst (right) generated reports, according to the conventional metrics for the word-based model.  
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Appendix B. Supplementary Data 

Supplementary data associated with this article can be found, in the 
online version, at https://doi.org/10.1016/j.artmed.2021.102075. 
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Table A.3 
Top 10 most frequent tags and breakdown of DCS.  

Tag % of training reports F1 on ground truth F1 on word based SAT F1 on sentence based SAT 

normal 39% 0.91 0.57 0.57 
degenerative change 11.3% 0.74 0.12 0.13 
opacity 10.7% 0.53 0.24 0.09 
atelectases 7.9% 0.61 0.28 0.11 
atelectasis 7.5% 0.58 0.15 0.11 
cardiomegaly 6.4% 0.51 0.21 0.13 
lung/ hypoinflation 6.4% 0.61 0.20 0.00 
calcified granuloma 5.8% 0.30 0.00 0.00 
lung/ hyperdistention 4.7% 0.35 0.00 0.00 
scarring 4.5% 0.69 0.00 0.00  

Table A.4 
DCS of test reports generated using word-based SAT, where DCS is computed 
using random forest, decision tree, and KNN instead of Naive Bayes. These 
models are used with default parameters from python based Scikit-learn library.  

Algo Approach 1-gram 2-gram 3-gram 4-gram 

Random Forest 
Ground Truth 0.55 0.5 0.47 0.42 
Word-based 0.33 0.3 0.25 0.16 
Sentence-based 0.35 0.34 0.29 0.25  

Decision Tree 
Ground Truth 0.71 0.7 0.64 0.54 
Word-based 0.34 0.27 0.10 0.10 
Sentence-based 0.36 0.26 0.16 0.13  

KNN 
Ground Truth 0.46 0.42 0.40 0.41 
Word-based 0.36 0.37 0.36 0.37 
Sentence-based 0.35 0.36 0.34 0.34  
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