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A B S T R A C T

The temperature rise at the global level and glacier shrinkage are deemed to induce new dynamics between
biotic and abiotic factors, especially in mountain regions. In this work, we aimed to assess: (a) the area made
available after glacier retreat since the Little Ice Age (LIA) for the colonization of alpine plants; (b) the ability of
14 alpine and nival species, typically growing on peaks and in deglaciated areas, to migrate and survive at lower
elevations in microrefugia across the treeline ecotone. In the Adamello-Presanella Massif (Rhaetian Alps), we
collected presence data on 14 alpine species within 3 × 3 or 5 × 5 m plots according to slope landforms and
deposits. The analysis of the elevation range of the investigated species across the treeline was performed using
Sentinel-2 satellite images to derive the actual position of the upper and lower treeline. The differences in the
species elevation ranges across slope landforms, in relation to the treeline elevation and aspect, were detected
with linear mixed models. Results showed that glaciers contracted sharply by more than 50% between the LIA
and 2006, making large deglaciated areas available (more than 57 km2). All the studied species were found at
low altitudes across the treeline ecotone, from about 500 to 1200 m below their typical habitat. Six species
(Cardamine resedifolia, Cerastium uniflorum, Leucanthemopsis alpina, Luzula alpinopilosa, Oxyria digyna, Saxifraga
oppositifolia) significantly exceeded the upper treeline in correspondence of alpine composite channels
(p < 0.001 for all species). One species (Adenostyles leucophylla) exceeded the upper treeline in correspondence
of composite slope deposits (p < 0.05). Two species (Ranunculus glacialis and S. oppositifolia) reached the lower
treeline in composite channels and slope deposits (p = 0.800, and p = 0.519, respectively).

The retreat of the alpine glaciers, coupled with the intensification of paraglacial processes, may favor new
habitat opportunities at high elevation and microrefugia at low altitudes for nival and alpine species. The
widespread presence of microrefugia for alpine plants downslope during warm periods suggests a low incidence
of biodiversity loss in the alpine regions due to climate change.

1. Introduction

The widely recognized temperature rise at the global scale has
caused over the last two centuries a worldwide rapid recession of the
glaciers (IPCC, 2014; Zemp et al., 2015). In the Alps, air temperature
increase has been more than twice higher than the global average over
the same period (Böhm et al., 2001; Gobiet et al., 2014), with a pro-
nounced summer warming which has been particularly evident after
1970 (Casty et al., 2005). Therefore, numerous glaciers have retreated
or have become extremely fragmented or extinct (Carturan et al., 2013;

Baroni and Salvatore, 2015; Salvatore et al., 2015). Following the
current climatic trend, numerous small glaciers (i.e., with a surface
smaller than 1 km2) located at lower elevation could completely melt
within the next few decades (Carturan et al., 2016).

During glacial retreat periods, paraglacial processes are assumed to
be the major drivers of landscape changes in alpine valleys due to the
collapse of valley slopes after ice melting (Ballantyne, 2002; Baroni
et al., 2014). The paraglacial land-system is very sensitive to climate
change and can respond over time scales ranging from the in-
stantaneous to the long-term response (million years; Mercier, 2008).
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Paraglacial processes typically include slope processes such as rock/
debris fall, debris flow, snow avalanches and gullying (Ballantyne,
2002). These processes are often associated to vegetation dynamics that
are in turn influenced by terrain age, deposit stability and sediment
properties (e.g., texture, moisture; Ballantyne, 2002; Eichel et al.,
2016). Along alpine valleys, slope processes linked to the paraglacial
dynamics play a key role in shaping the position of the local treeline
ecotone, that is globally dependent on climatic variables (Baroni et al.,
2007; Masseroli et al., 2016; Knight et al., 2018).

According to Jeník (1997), the altitudinal variation of the alpine
treeline reflects the combination of two main processes along mountain
slopes: the effects of the vertical climatic gradients and disturbing im-
pacts of the anemo-orographical systems. Particularly, the rise in tem-
peratures and glacier shrinkage are deemed to induce new dynamics
between biotic and abiotic factors dependent on geomorphic processes
acting in mountain and alpine ecosystems (Restrepo et al., 2009). Cli-
mate change is expected to affect the disturbance regimes (e.g., hy-
drologic regimes, mass movements) and therefore to impact the species,
populations and communities growing along the mountain slopes
(Turner, 2010; Gentili et al., 2013).

The fate of the alpine flora in European mountains during the past
glacial periods has been widely discussed through scientific literature
(Abbott, 2008; Birks and Willis, 2008; Birks, 2015). Accelerated tem-
perature increase and glacier retreat are also expected to impact bio-
diversity at different spatial scales, from landscape and ecosystem to
habitat and species levels (Miller and Lane, 2018). Alpine biodiversity
is considered under threat due to the observed and expected shift of
plants and animals towards higher elevations following more suitable
environmental conditions (Pauli et al., 2012). Gottfried et al. (2012)
provide evidence of a plant species turnover towards higher elevations
across European mountains: cold adapted species are declining while
warm adapted species are increasing. A too rapid or extreme tem-
perature increase induced by climate change is believed to overtake the
ability of alpine species to migrate or to adapt to such changes (Jump
and Peñuelas, 2005). In the short term, such a fast species turnover has
increased plant species richness of boreal-temperate mountains (+3.9
species during the period 2001–2008; Pauli et al., 2012).

Studies emphasize that air or ground temperature that species ex-
perience (i.e. microclimate) can greatly differ from air temperature due
to vegetation type, local topography, aspect and soil characteristics
(Ashcroft et al., 2012; Gentili et al., 2015a; Bátori et al., 2017). For
instance, ground temperatures in mountain areas can differ up to 9 °C
from the air temperature (De Frenne et al., 2013). Therefore, it is
crucial to understand the ecological drivers of alpine ecosystems in
order to predict future scenarios from the macro- to the micro- scales.
Particularly, understanding how alpine flora will be able to adapt to
warm interglacial periods avoiding extinction is a new exciting and
narrowly treated topic across literature (Stewart et al., 2009; Gentili
et al., 2015a). Previous studies suggest that species respond to climate
change with different strategies: a) migration to new areas with suitable
environmental conditions (Telwala et al., 2013); b) evolution through
adaptation to the new environmental conditions (Sedlacek et al., 2016);
c) reaction through adaptive phenotypic plasticity (Ghalambor et al.,
2007). Conversely, recent studies highlight that alpine flora may be
able to respond to increasing temperatures surviving in marginal or
local warm stage refugium/microrefugium (Gentili et al., 2015a,
2015b).

During interglacial stages, microrefugia are those areas with fa-
vorable cold/fresh microclimates spread within larger areas or regions
(i.e., macrorefugia) characterized by unfavorable warm climate (Rull,
2009). In these areas, populations of species can persist isolated from
their core distributions (Stewart et al., 2009; Dobrowski, 2011) from
short to long time scales (Kiedrzyński et al., 2017). Gentili et al. (2015a)
characterized from an ecological perspective glacial, nival, periglacial
and composite landforms and deposits that may function as potential
microrefugia during warmer periods in alpine areas. Several authors

agree that during past interglacial warm periods, forest and cold-
adapted species persisted through an upward migration to mountain
refugia (sensu lato) or in other refugia in lowland areas (Bush, 2002;
Bhagwat and Willis, 2008; Rull, 2009).

Until now, only few experimental works demonstrated the current
locations of alpine microrefugia for cold/cool-adapted species at lower
elevations, close to the timberline. For instance, Bátori et al. (2017)
identified karst dolines as microrefugia for some boreal cold-adapted
species in East-European mountains. Within these landforms, the
thermal inversion often maintains cooler conditions in grassland and
forest ecosystem contexts. Shimokawabe et al. (2015) found alpine
shrub species occurring at “wind-hole sites” in lowland forested land-
scape, isolated from alpine zones. To the best of our knowledge, no
studies treated the occurrence and microrefugia of high alpine and nival
species across treeline so far.

In this work, we hypothesize that geomorphological processes de-
riving form paraglacial activity can increase habitat heterogeneity and
climatic shelter along valley slopes. Across the treeline ecotone, mi-
crorefugia for alpine plants could increase as a consequence of such
heterogeneity.

The treeline ecotone in alpine regions was derived for the first time
from the newly available European Space Agency (ESA) Sentinel-2 (S2)
images. S2 carries an innovative imaging spectrometer covering the
visible, near infrared and shortwave infrared spectral regions with a
spatial resolution of 10–60 m depending on the spectral band and a
temporal resolution of five days (Drusch et al., 2012).

The specific goals of this work are: a) to assess the extent of ice-free
area due to the glacial retreat since the Little Ice Age (LIA) as new
habitat available for alpine species colonization; b) to quantify the
ability of 14 plant species (Adenostyles leucophylla, Cardamine re-
sedifolia, Carex curvula, Cerastium uniflorum, Doronicum clusii, Festuca
halleri, Leucanthemopsis alpina, Luzula alpinopilosa, Oxyria digyna, Poa
laxa, Ranunculus glacialis, Saxifraga bryoides, S. oppositifolia and Veronica
alpina), generally living at glacial fronts and/or at mountain peaks, to
migrate and survive at lower elevations in microrefugia across the
treeline ecotone.

2. Methods

2.1. Study area

The study area is situated in the Adamello-Presanella mountain
group (Italian Rhaetian Alps; 46°09′ N, 10°29′ E; Fig. 1). The bedrock
primarily consists of tonalite, granodiorite and quartz diorite rocks and
small basic plutons (Brack et al., 2008; Callegari and Brack, 2002).

The study sites are located along an altitudinal gradient ranging
from the timberline to the summit areas, approximately from 1500 to
3200 m above sea level (a.s.l.) (Fig. 1). The summit areas of the Ada-
mello-Presanella host the Adamello Glacier, the largest glacier of the
Italian Alps (about 16 km2 in 2007), as well as about 90 other minor
glacial bodies (Salvatore et al., 2015). Several alpine valleys originate
from the summit area of the massif in a radial pattern. The landscape
shows a well-defined Alpine glacial morphology, characterized by deep
glacial troughs with a succession of several basins and steps, steep
glacial shoulders, truncated spurs, glacial cirques, sharp ridges (arêtes)
and horns (Baroni et al., 2014; Carton and Baroni, 2017; Fig. 2). The
most incisive morphogenesis is presently due to mass wasting, water
runoff and cryonival processes (Baroni et al., 2004, 2007). At the toe of
valleys slopes, debris production, mass movement, debris flow, running
water and snow avalanches generate composite debris cones (Baroni
et al., 2007; Seppi et al., 2019).

Composite debris cones are dominant elements in the alpine land-
scape. Channels cross cones and are frequently connected to deep gul-
lies cutting rocky walls behind the cones (Baroni et al., 2013). Channels
on composite debris cones are polygenic landforms converging running
water, collecting avalanches and producing debris flows. Active
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geomorphological processes show different strengths and frequencies at
different elevations. At lower elevations (approximately below
2100 m), stream deposits and alluvial fans prevail. Debris flows are
mostly active at the foot of valley slopes. At mid elevations (over
2100 m), periglacial and paraglacial processes are more active, giving
rise to nival landforms and deposits, such as avalanche tracks, ava-
lanche debris deposits, avalanche cones and rock glaciers. Glacial
processes and deposits (moraine ridges, glacial drifts and fluvioglacial
deposits) increase at high elevation (over 2400 m) becoming almost
exclusive above 2900 m. Soil patches cover the slopes depending on the
activity of the geomorphological processes (Baroni et al., 2007).

The climate is inner-alpine and consists of cold winters and tem-
perate summers. The mean annual air temperature, above treeline
ranges from about −10 °C to 13 °C (meteorological data downloaded
from: www.meteotrentino.it; Supplementary Material 1). Locally,
channel beds, snow patches and other landforms act as microclimatic
shelter favoring lower temperatures (until 3 °C, see Supplementary
Material 2) compared to surrounding areas. Precipitation increases with
elevation and ranges from about 800 to 1500 mm year−1 (Baroni et al.,
2004).

In the study area, closed forests dominated by Picea excelsa are

replaced above ~1800 m by Larix decidua and Picea excelsa and open
forests with localized presence of Pinus cembra (Piceion excelsae; Gentili
et al., 2010). The vegetation close to the upper treeline primarily
consists of heaths of ericaceous species (Rhododendron ferrugineum,
Vaccinium myrtillus, V. vitis-idaea, and V. uliginosum; Rhododendro fer-
ruginei-Vaccinion). Channels and avalanche tracks are characterised by
Alnus viridis and Salix spp. shrublands (Alnion viridis). Above treeline,
grassland vegetation is dominated by Nardus stricta grasslands (Nardion
strictae) at the bottom valleys, and by Festuca scabriculmis ssp. luedii
grasslands (Festucion variae) and Carex curvula grasslands (Caricion
curvulae) on slopes. The snowbed vegetation mostly consists of Salix
herbacea dwarf shrubs and Luzula alpinopilosa discontinuous grasslands
(Salicion herbaceae). Rumex scutatus (close to the treeline) and Oxyria
digyna (Androsacion alpinae) communities characterize the pioneer ve-
getation (Gentili et al., 2010). Syntaxonomic nomenclature is based on
Mucina et al. (2016).

2.2. Glacier retreat assessment

To assess recent glacier retreat we compared glacier outlines and
extension between the LIA (that corresponds to the maximum Holocene

Fig. 1. Location map of the study area. White and black circles indicate plot sites on i) recent glacial deposits and ii) peak areas or active (or recently stabilized)
landforms (avalanche deposits, channels, rock/debris fall deposits, debris flows deposits), respectively. Blue polygons indicate glaciers extension referred to 2006
(after Salvatore et al., 2015). Contour intervals are 500 m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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glacier extension in the Alpine region) and 2006 CE. The LIA glacier
position in the Adamello–Presanella Group were derived from Zanoner
et al. (2017) for the Trentino region and from Baroni et al. (2014) for
Val Salarno and Val Adamè area. These data were integrated with our
original research conducted in key sites, where glacier shrinkage was
more significant. We reconstructed LIA glacial limits based on geo-
morphological and glacial geological field surveys, improved with in-
terpretation of stereoscopic aerial photographs. LIA glacial bodies po-
sition was depicted considering glacial erosional trimlines and
depositional landforms (moraines and glacial drifts) as well as key
geomorphological features such as sharp ridge crests, steep flanks, su-
perpositional moraine structures, absence of vegetation, and limited
lichen cover (Baroni and Carton, 1996; Carturan et al., 2014; Zanoner
et al., 2017). Furthermore, other important data source were historical
maps compiled in the second half of the 19th and at the beginning of
the 20th centuries depicting glacier boundaries almost con-
temporaneous to the Little Ice Age (Istituto Geografico Militare Italiano,
IGMI, 1885a, 1885b, 1908, 1918; Payer, 1865) and in the first years of
the 20th century (Deutschen und Österreichischen Alpenvereins,
DÖAV, 1903).

Glacier extension in 2006 CE comes from glacier limits modified
after Salvatore et al. (2015). Glacier outlines were inferred from the
interpretation of digital RGB true-colour ortophotos with a radiometric
resolution of 8 bit for channels and nominal geometric resolution of
50 cm × 50 cm provided by the Italian National Geoportal of the
Ministry of Environment and Protection of Land and Sea (http://www.
pcn.minambiente.it/mattm/en/view-service-wms/) through Web Map
Service (WMS, last access 07/09/2019).

All glacial bodies outlines were manually digitized from maps and
orthophotographs in GIS environment.

2.3. Extraction of the treeline ecotone from satellite images.

The treeline ecotone in the Adamello-Presanella mountain group
was obtained integrating a supervised classification of multispectral S2
images and terrain parameters derived from a high spatial resolution
digital elevation model (DEM).

A schematic workflow of the procedure showing input data, inter-
mediate data and output data is presented in Fig. 3.

DEM data with 2 and 5 m spatial resolution were obtained from the
cartographic portals of the Trentino (LIDAR rilievo 2006/2007/2008,
Ufficio Sistemi Informativi – Servizio autorizzazioni e valutazioni am-
bientali, Provincia autonoma di Trento) and Lombardia (DTM 5x5
(WMS) – Modello digitale del terreno (ed. 2015), Servizi geografici,
Regione Lombardia) regions, respectively. The DEM data were re-
sampled to 10 m to match the S2 image pixel size and the watershed
boundaries, elevation and aspects were derived using the ArcGIS soft-
ware (Esri, Redlands, USA).

Four S2 images with cloud cover lower than 10% collected between
June and September 2017 were used as input of the supervised classi-
fication. The S2 satellite carries a multi-spectral instrument measuring
reflected radiance in 13 spectral bands spanning from the visible to the
shortwave infrared spectral range (Table 1). The S2 images were cali-
brated and geometrically registered (L1B products) by the ESA S2
Mission Performance Centre and atmospherically corrected using the
Sen2Cor processor.

Several vegetation indices (VI) were tested: the Normalized
Difference Vegetation Index (NDVI, Rouse et al., 1974) related to ve-
getation green biomass, the Normalized Difference Infrared Index
(NDII, Hardisky et al., 1983) related to changes in water content of
plant canopies, the Normalized Difference Red-Edge (NDRE, Gitelson
and Merzlyak, 1994) related to vegetation chlorophyll content and the
GRVI (Green-Red Vegetation Index; Tucker, 1979) used as phenological
indicator in previous studies (e.g., Motohka et al., 2010). These indices
were computed as reported in the following equations:

=
−

+

NDVI R R
R R

865 665

865 665

=
−

+

NDII R R
R R

865 1610

865 1610

=
−

+

NDRE R R
R R

740 705

740 705

=
−

+

GRVI R R
R R

665 560

665 560

where R is the reflectance at the specified wavelength (nm).
The shaded pixels, the glaciers and the areas below 1200 m (i.e., the

typical upper limit of a continuous coniferous forest area in the study

Fig. 2. Presanella and Passo di Stavel glaciers (on the
right and on the left, respectively). The skyline is
marked by sharp and narrow ridges and pyramid
peacks. Trimlines are preserved on rocky outcrops
above glaciers’ accumulation areas and at the foot of
the slopes along the valley marked by different colour
of staining. In foreground, debris cone and moraines
of the Little Ice Age. Present frontal margin of the
Presanella Glacier retreated more than 1300 m since
the Little Ice Age.
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area; Caccianiga et al., 2008) were masked.
The training data set for S2 classification consisted of ten land cover

classes identified and framed according to Janssen et al. (2016): 1)
Temperate mountain Picea woodland, 2) Alpine Larix–Pinus cembra
woodland, 3) Picea woodland/Beech woodland, 4) Beech woodland /
Abies and Picea woodland, 5) Abies and Picea woodland, 6) Subalpine
deciduous scrub (green alder and willow), 7) Subalpine Pinus mugo
scrub, 8) Evergreen alpine and subalpine scrub, 9) Temperate acid-
ophilous alpine grassland and 10) Acid siliceous inland cliffs / Tem-
perate-montane acid siliceous screes. Based on these classes, a spectral
endmember set composed of 20 homogeneous polygons of 25 pixels
each per class (500 pixels per class in total) was defined to train the

algorithm to assign all the pixels of the image to the proper class au-
tomatically. The selection of the best performing VI to be used in the
classification process was evaluated through a spectral separability
analysis. Two spectral distance measures were calculated: the Jeffries-
Matusita distance and the transformed divergence (Richards and Jia,
1986). The values obtained for each pair of classes were then averaged
to compare the overall performance of the different VIs tested. The
highest separability was obtained using the NDII time series as input
according to both the distance metrics. Based on this evaluation, we
selected the NDII as input of the maximum likelihood classification
algorithm.

A majority filter with a kernel of 5 × 5 pixel was applied to improve
the map patterns. The polygons of the ten classes were then merged in
four main categories needed for the treeline ecotone definition (i.e.,
forest, ecotone, grassland, rock/debris). The accuracy was evaluated by
comparing the classification result against the forest type maps of
Lombardia (ERSAF, 2006) and Trentino regions (Odasso et al., 2018).
The confusion matrix and k-statistics (Stehman, 1997) were calculated
in correspondence of all the pixels (more than 3 millions) where both
the forest type maps and the classification results were available.

The “forest” and “ecotone” classes were then converted into sha-
pefiles after excluding the polygons with a smaller area than 0.8 ha to
avoid the inclusion of small and fragmented stands which may hamper
the definition of the treeline at the scale of this study. The upper and
lower treelines were finally defined at the watershed level as the upper
limits of the ecotone and forest polygons, respectively. The elevation
and aspect values of each point constituting the upper and lower limits
of the treeline ecotone were finally extracted from the DEM.

Fig. 3. Schematic workflow of the semi-
automatic extraction of the upper and
lower treelines from Sentinel-2 (S2)
images. The box colours link the products
obtained with the corresponding data
source: “Elevation” and “Watershed defi-
nition” (blue) were derived from the
Digital Elevation Model (DEM);
“Vegetation type classification” and
“Forest and ecotone areas” (yellow) were
derived from S2 data; “Training set” and
“Validation set” (red) were defined based
on the Vegetation type map. The green
boxes indicate the final products ob-
tained. The parallelogram shapes mark
the methodological steps.” (For inter-
pretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)

Table 1
Specification of the Sentinel-2 spectral bands.

Band number Central wavelength
(nm)

Bandwidth (nm) Spatial resolution
(m)

1 443 20 60
2 490 65 10
3 560 35 10
4 665 30 10
5 705 15 20
6 740 15 20
7 783 20 20
8 842 115 10
8a 865 20 20
9 945 20 60
10 1375 30 60
11 1610 90 20
12 2190 180 20
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2.4. Alpine flora range

The survey was conducted in the main valleys of the study area (i.e.,
Adamè, Avio, Fumo, Genova, Miller, Narcanello, Presena, Salarno and
Stavel valleys), between July and September from 2010 to 2016
(Fig. 1). The presence/absence of 14 alpine species selected from lit-
erature were assessed (see Supplementary Material 3 for the literature
consulted). These species are typical of alpine and nival belts and very
frequent in recent glacial deposits (GL) and peak areas (Peak) of the
Central Alps (Table 2; see Festi and Prosser, 2008). The species typical
of glacial deposits were: Adenostyles leucophylla, Carex curvula, Luzula
alpinopilosa, Oxyria digyna, and Veronica alpina. The species typical of
peak areas were: Cardamine resedifolia, Cerastium uniflorum, Doronicum
clusii, Festuca halleri, Leucanthemopsis alpina, Poa laxa, Ranunculus gla-
cialis, Saxifraga bryoides, and Saxifraga oppositifolia. Species were re-
corded within a total of 274 plots of 3 × 3 m or 5 × 5 m selected
according to a stratified random sampling. In order to have more re-
cords of the elevational patterns of the selected species, 65 plots of
5 × 5 m were included from the previous study of Gentili et al. (2013).
The 5 × 5 m plots were homogeneously distributed across the study
area so we expect that the difference in plot sizes do not affect the
presence/absence records of the studied species. Strata consisted of
active landforms and deposits, in particular: avalanche deposits (AV;
n = 26), alpine channels (C; n = 35), rock/debris fall deposits (D;
n = 24) and debris flow deposits (DF; n = 49). As reference landforms,
we selected three peaks and the surrounding crest areas above 2800 m
in elevation (Peak; n = 32; a – Cima Venerocolo, 3323 m; b - Cima
Presena 3069 m; Corno Premassone, 3070 m) and 5 glacial deposits
(GL; n = 47; Val Presena, ~2750 m; Val Stavel, ~2650 m; Val di Fumo,
~2600 m; Val Salarno, ~2650 m; Val di Genova, ~2500 m) progres-
sively deglaciated starting from the LIA maximum position. For species
with low frequency of occurrence, AV, D and DF strata were grouped in
a composite stratum of slope deposits (COMP; n = 61). Within each
plot, the following information were recorded:

(a) elevation (m a.s.l.);
(b) presence of the 14 species;
(c) landform unit/deposit type: AV, C, D, DF, (or COMP), GL, Peak;
(d) prevalent aspect: 316°–360° and 0°–45° = N, 46°–135° = E;

136°–225° = S; 226°–315° = W.

Taxonomic nomenclature used in this paper follows the Portal to the
Flora of Italy (http://dryades.units.it/floritaly/).

2.5. Data analysis

Linear mixed models (LMM) were used to identify differences in the
elevation (Elev) of the 14 alpine species recorded on the main alpine
landforms: Peak, GL, AV, D, DF and COMP. Particularly, the difference
with the elevation of the lower and upper treelines (TL_L and TL_U) was
investigated. The effect of the main aspect (Aspect: N, S, E, W) of each
plot was also considered. Landform (comprising the TL_L and TL_U
categories) and Aspect were fitted as fixed factors, while the location in
the nine investigated valleys (loc) was fitted as a random effect (see
Supplementary Material 4). All statistical tests were performed using
the R software (R Core Team, 2018) and the ‘lme4′ package (Bates
et al., 2015). The post-hoc Tukey’s HSD tests for multiple comparisons,
and adjusted p-values, were performed using the ‘multcomp’ package
(Hothorn et al., 2008).

With regards to the elevation range of the alpine species in relation
to upper and lower treelines, we used the following terms:

– “species crossing the treelines”: when no significant differences oc-
curred in the mean elevation range of the alpine species with respect
to the mean elevation of the treelines;

– “species exceeding the treelines”: when the mean elevation range ofTa
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the alpine species was significantly lower than the mean elevation of
the treelines;

– “species not crossing (exceeding) the treelines”: when the mean
elevation range of the alpine species was significantly higher than
the mean elevation of the treelines.

3. Results

3.1. Glacier retreat assessment

During the LIA, the Adamello-Presanella Group hosted more than
100 glacial bodies. Our data show that between the maximum LIA ex-
tension and 2006 CE the Adamello-Presanella glaciers lost about 50% of
the total area, which corresponds to more than 57 km2 of newly ice-free
area.

Under the ongoing withdrawal phase, it is worth noting that ice-free
areas are gradually enlarging not only at the retreating frontal margin
but also in the accumulation basins, being particular evident above the
upper glacial limit. A relevant geomorphological consequence is that
the upper trimline is progressively lowering in several sectors of the
glaciers head (Fig. 4). Furthermore, rocky windows emerging from
glaciers surface are progressively forming or enlarging thus providing

additional ice-free areas within glacial environment. Between 1850 and
2006, in the Adamello-Presanella group the newly released ice-free
areas exceeded 7.8 km2 above 3000 m a.s.l., assumed as conservative
value of Equilibrium Line Altitude of these glaciers during 80 s and 90 s
(Baroni and Carton, 1996). This significant lowering of glaciated sur-
face is due to an accelerated negative mass balance of glaciers, which
reflect an unprecedented glacial retreat also in the accumulation basin.

3.2. Treeline

The supervised classification of the multitemporal NDII series from
S2 allowed to map the main vegetation belts over the Adamello-
Presanella mountain group at 10 m spatial resolution. The categories
(forest, ecotone, grassland and rock/debris) derived from the aggrega-
tion of the ten classes obtained with the supervised classification
showed a satisfactory overall classification accuracy of 86% and k of
0.6, in line with literature (Immitzer et al., 2016; Radoux et al., 2016).

The average elevation of the lower and upper treelines in the in-
vestigated area ranged between 1812 and 2101 m and between 1908
and 2256 m, respectively (Table 3). On average, the lower treeline was
found at the highest elevation on the western aspects and at the lowest
elevation on the north exposed aspects. Whereas the higher treeline
reached the highest elevation on the eastern aspects and the lowest
elevation on the northern aspects.

3.3. Alpine flora range

All the 14 alpine species shifted from mountain peaks and recent
glacial deposits to treelines in correspondence of the investigated
landforms and deposits (Figs. 5 and 6). Regarding species that are ty-
pical of glacial deposits and peaks, the maximum extent of downward
species migrations was registered in channel (C) for both recent glacial
deposits (GL; 559 m for Oxy_dig) and mountain peaks (Peak; 1206 m for
Sax_opp) species. Conversely, the minimum extent of downward mi-
gration was registered in COMP (292 m for Car_cur) for recent glacial
deposit and in DF (872 m for Car_res) for mountain peak species.

All the species crossed the upper treeline (TL_U), i.e., no significant
differences between the mean elevation of high alpine species and
elevation of upper treeline (TL_U) at the different landforms and de-
posits (i.e., AV, C, D, DF and COMP; Table 2) were recorded (Figs. 5 and
6). Six species significantly exceeded the upper treeline in correspon-
dence of channels (C): Car_res (z value = 6.18; p < 0.001), Cer_uni (z
value = 3.67; p < 0.01), Leu_alp (z value = 4.96; p < 0.001), Lu-
z_alp (z value = 3.13; p = 0.022), Oxy_dig (z value = 3.96; p < 0.01),
Sax_opp (z value = 6.24; p < 0.001). One species exceeded the upper
treeline (TL_U) in correspondence of composite slope deposits (COMP):
Ade_leu (z value = 2.68; p = 0.044). Two species significantly crossed
the lower treeline (TL_L; i.e., no significant differences between the
mean elevation of high alpine species and elevation of lower treeline),
one in channels (C) and one in composite slope deposits (COMP):
Ran_gla (z value = − 1.19; p = 0.800), and Sax_opp (z value = 1.63;

Fig. 4. Presena Glaciers’ outlines during the Little Ice Age (blue) and during
2006 (light blue, after Salvatore et al., 2015). White circles indicate samples
sites. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Average elevation (m) of the lower and upper treeline in the nine main valleys analysed in this study.

Avio Miller Narcanello Salarno Adamè Stavel Fumo Presena Genova Total area

Average elevation of the lower tree line (m)
N 1861 1945 1956 1893 1812 1962 2060 1840 1900 1913
E 1841 1932 1988 1867 1820 1966 2068 1835 1909 1930
S 1843 1973 2101 1939 1837 2051 2073 1934 1906 1956
W 1872 1945 2005 1961 1848 2058 2094 1929 1883 1972

Average elevation of the upper tree line (m)
N 2131 2020 2181 1936 2006 2235 2180 2175 2130 2131
E 2152 2090 2185 2008 2005 2239 2181 2164 2149 2161
S 2163 2049 2197 1957 2031 2256 2183 2215 2148 2135
W 2114 1908 2225 2032 2065 2230 2162 2129 2121 2133
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Fig. 5. Mean elevation of alpine species typical of peak areas on different landform slope deposits or landform units and compared with the mean elevation of
treelines. Circles represent outliers. Brown background colour highlights the elevation range of the species in their typical alpine habitat. Green background colour
highlights the elevation range of the upper and lower treelines. Legend: AV = Avalanche deposits; C = Channels; D = Rock/debris fall deposits; DF = Debris flows
deposits; GL = Recent glacial deposits; Peak = Peak area; U_TL = Upper treeline; L_TL = Lower treeline. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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p = 0.519).
Considering the Aspect factor, N vs S aspects were significantly

different for all the species. W vs N were significantly different for 9
species, N vs E for 4 species and S vs E for 2 species. W vs E and W vs S
aspects were never significantly different (Supplementary Material 4).

4. Discussion

Our work demonstrates that the link between glacier retreat and
slope processes (paraglacial activity) creates new colonization areas for
alpine plants at high elevation as well as widespread microrefugia at
low elevation across treelines during the current warm period.

Over the past two centuries, glacier reduction made available
57 km2 of terrain in the study area that has been partially colonized by
alpine species. Contemporarily, the increased influence of paraglacial
processes and geomorphic disturbance along slopes facilitated the mi-
gration and the colonization of all the studied alpine or nival species in
free spaces across treelines. Our results registered species’ downward
migration exceeding 1000 m with respect to the usual habitat of the
same species (peak areas or glacier deposits). Therefore, alpine plant
migration and colonization is likely controlled by climatic stress and
substrate disturbance by cryoturbation at high elevation. At lower

elevations, the controlling factors are biotic interactions and substrate
instability (Matthews et al., 2018). Another important factor playing a
key role in the position of the treeline ecotone and in plant migration
along elevation is slope aspects. As expected, we found the main sig-
nificant differences between N and S slopes. In S aspects, both treeline
ecotone and alpine species had the highest mean elevations. Similarly,
W aspects exhibited higher elevational range than E aspects for the
studied species. Similarly to our findings, previous works demonstrated
that across different aspects, exposure to direct sunlight, soil tempera-
ture, soil composition and soil water content greatly vary, determining
different plant communities (Dearborn and Danby, 2017; Qin et al.,
2019).

The ongoing plant migration at high elevation and the increase in
species diversity on mountain summits due to climate change is widely
recognized across literature (e.g. Steinbauer et al., 2018). However, our
results support the evidence that plants species could be less susceptible
to decline in mountain regions than predicted by several ecological
models (Dullinger et al., 2012; Carlson et al., 2013; Wershow and
DeChaine, 2018). Many examples come from marginal chains, generally
deglaciated and with lower elevation than Alps: Apennines, Dinaric
Alps, Central Massif, Corsica, and Balcan Mountains in Europe. During
the current warm period, such mountains provide shelter for boreo-

Fig. 6. Mean elevation of alpine species typical of recent glacial deposits on different landform slope deposits or landform units and compared with the mean
elevation of treelines. Circles represent outliers. Brown background colour highlights the elevation range of the species in their typical alpine habitat. Green
background colour highlights the elevation range of the upper and lower treelines. Legend: AV = Avalanche deposits; C = Channels; D = Rock/debris fall deposits;
DF = Debris flows deposits; GL = Recent glacial deposits; Peak = Peak area; U_TL = Upper treeline; L_TL = Lower treeline. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

R. Gentili, et al. Catena 193 (2020) 104626

9



alpine plants and vegetation associated to specific landforms like scree
slopes, nivation niches, and moraine ridges (Ferrari and Rossi, 1995;
Redzic, 2011; Gentili et al., 2015b). For instance, Tomaselli and
Agostini (1990) recorded arctic-alpine species (Empetrum ermaphro-
ditum, Juncus trifidus and Luzula alpinopilosa) surviving on inactive and/
or relict rock glaciers in the Apennines at the boundary with the tree-
line.

4.1. Glacier retreat makes available new colonization areas

During the LIA, the Adamello-Presanella Group hosted more than
100 glacial bodies. Our data showed that between the maximum LIA
extension and 2006 CE, the Adamello-Presanella glaciers have lost
about 50% of the total area (more than 57 km2). Our results are in
agreement with glacier retreat registered in the European Alps, where
35% of areal extension was lost between 1850 and 1970 s, followed by
additional 22% at the end of the 21st century (Paul et al., 2004; Zemp
et al., 2007). The maximum frontal withdrawal exceeds 2000 m as
registered by Lobbia and Adamello (Mandrone) glaciers, which showed
further acceleration in recent years (Baroni et al., 2016, 2017, 2018,
2019; WGMS, 2018).

Likewise, the mass balance records, which are frequently linked to
signals of climate change, emphasized the volume reduction over the
last century (Oerlemans, 2005).

The knowledge of the extent of glacier retreat may be extremely
important in the future prediction of alpine plant migration and range
loss as well as in the assessment of their extinction risk. The new co-
lonization areas and habitats made available by glacier contraction
might mitigate range loss of alpine species due to climate change
(Carlson et al., 2014). The higher habitat availability following glacier
contraction offsets the decrease of available areas for species estab-
lishment with altitude. Mountain topography (i.e., geometric con-
straints) reduce the range size of plants, limiting their possibility to
migrate upward.

4.2. Plant species crossing treeline

The results of this study, by recording the elevation patterns of 14
alpine and nival plants, demonstrate their downward migration respect
to the treelines following the active geomorphological processes acting
along alpine slopes. Landforms and deposits at low elevation across
treelines create both climatic shelter (for instance within channels or
snow avalanche tracks) and continuous mechanical disturbance thus
habitat heterogeneity. These factors can promote microhabitat (i.e.
microrefugium) at low elevation where high alpine species can persist
more than one thousand meters below their common distribution range
(see Gentili et al., 2015a).

With respect to the trend of species and habitat shifts towards
mountain summits (Dullinger et al., 2012; Steinbauer et al., 2018), this
appears to be a kind of “counter-migration” that could enhance the
resilience of alpine species. According to Ellenberg (1988), the presence
of alpine species at lower elevation than their typical range (at moun-
tain peak or at the glacier fronts) is a signal that they are not confined to
higher elevations due to physiological limits; they are not enough
competitive at lower elevations due to the presence of more competitive
species. For this reason, active geomorphologic processes, creating
continuous disturbance to the resident communities, open new roads
for cold species colonization at low elevations. In this direction,
Tampucci et al. (2016) highlighted that debris-covered glaciers are able
to persist below the treeline supporting plant life. Given that geomor-
phological processes in alpine valleys act from short to long term along
the slopes, the same will apply to the available habitats suitable for the
species establishment.

Kulonen et al. (2018) recently performed a study on 11 alpine
summits, founding that the long-term frequency of high alpine plants is
strictly linked to their microhabitat preferences (i.e., scree, rocky slopes

or patches of organic soil, on warmer or colder aspects). In our study,
we found that microhabitats suitable for alpine plant establishment can
be also found at the treeline ecotone. Indeed, at the treeline, geomor-
phological disturbance favors the formation of microhabitat with pe-
culiar microclimates facilitating the persistence of high alpine and nival
species (Giaccone et al., 2019). Microhabitat and diversification is es-
tablished by different abiotic characters linked to different landforms
and deposits: a) presence of rocky outcrop; b) textural characteristics; c)
presence of soil patches; d) frequency and type of disturbance of geo-
morphological processes (e.g., running water, avalanche, debris flow,
rock debris fall, debris movement); e) snow cover duration (e.g., ground
temperature); f) aspect, and g) microtopography (Baroni et al., 2007;
Keller et al., 2005; Rossi et al., 2014; Pisabarro et al., 2017). All these
characteristic factors of microhabitats, singularly or in combination,
may create a plethora of climate and disturbance microrefugia for
plants isolated from the matrix (Serra-Diaz et al., 2015).

Despite numerous slope processes functioning as corridors favor the
downward migration of alpine species, channels seem to have more
energy to push species down valley (Butler, 2001). Indeed, in alpine
and mountain environments most of the channels are polygenic as
several seasonal processes are active within them: running water,
avalanche track, debris flow, and debris/rock fall. Different micro-
landforms and deposits (e.g., channel bed, banks, and levee) provide a
multitude of micro-habitats for alpine species within small distances
(Gentili et al., 2010).

Over the last centuries, the treeline shift toward higher elevation
has been linked to vegetation dynamics, climatic trend and land use
change (Leonelli et al., 2009; Bodin et al., 2013; Millar et al., 2018).
However, the paraglacial processes are predicted to become dominant
in glaciated mountains worldwide because of glacier retreat caused by
global warming (Knight and Harrison, 2014). Therefore, geomorpho-
logical processes associated to slope instability and mass movement will
modify their magnitude and frequency at multiple scales (Stoffel and
Huggel, 2012; Einhorn et al., 2015). In this scenario, geomorphological
processes will have an increasing importance in controlling future
treeline dynamics (disturbance and succession; Serra-Diaz et al., 2015;
Masseroli et al., 2016). They also will play a key role in controlling
microrefugia location, thus colonization patterns of nival and alpine
species across treelines.

4.3. Warm stage microrefugia for nival and alpine plants

In recent studies, microrefugia hypothesis has been invoked to ex-
plain the persistence of some mountain species during Quaternary cli-
mate oscillations, particularly during cold periods (Mee and Moore,
2014; Patsiou et al., 2014). Following this hypothesis, our study em-
phasizes the presence of new habitat and widespread microrefugia in
alpine areas during warm stages, at the top of the mountains and the
treeline ecotone. Glacier shrinkage furnished about 50% of previously
glaciated area, of which more than 25% located above 3000 m a.s.l.,
being available as newly formed rocky surface for plant colonization.
Furthermore, mass movement acting along slopes produced new habitat
opportunities also at lower elevation. Widespread microrefugia would
partially explain the ascertained tendency for certain species that
shifted their mid-range downward over the last decades (Grytnes et al.,
2014).

5. Conclusions

For the first time, this study ascertains the widespread presence of
microrefugia for typical alpine species across the treeline ecotone fa-
vored by deglaciation and the subsequent increased influence of geo-
morphological processes along slopes. Slope landforms provide wide-
spread microrefugia in the current warm period and may provide in the
future suitable microhabitat and climatic shelter to alpine species, fa-
voring their survival. Therefore, our study suggests low incidence of
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biodiversity loss in the alpine mountains, in the short and medium
term, because of climate change. Future studies should consider the
geomorphological processes acting along slopes in predictive models to
avoid misjudging of ecosystems changes and overestimating the ex-
tinction risk of alpine species. In addition, genetic and evolutionary role
of alpine species living at the treeline ecotone will have to be deepened
and clarified.
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