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ABSTRACT

Recently, deep learning frameworks have rapidlyobex the main methodology for analyzing
medical images. Due to their powerful learning igbiand advantages in dealing with complex
patterns, deep learning algorithms are ideal f@agenanalysis challenges, particularly in the fad
digital pathology. The variety of image analysisk& in the context of deep learning includes
classification (e.g., healthy vs. cancerous tissuitection (e.g., lymphocytes and mitosis
counting), and segmentation (e.g. nuclei and glaegsentation). The majority of recent machine
learning methods have a pre and/or post-processiage that is based on traditional image
processing methods which is integrated with a dempal network. These traditional methods are
employed to make the subsequent classificatiomctieh, or segmentation problem easier to solve.
Several studies have shown how the integrationr@famd post-processing methods within a deep
learning pipeline can further increase the mode€gormance when compared to the network by
itself. The aim of this review is to provide an oxew on the types of pre and post processing
methods that are used within deep learning framlesyoiocusing on digital pathology image
analysis. Many of the techniques presented hepecedly the post-processing methods, are not

limited to digital pathology but can be extendealimost any image analysis field.

Keywords. digital pathology; histology; deep learning; ineagnalysis; pre-processing; post-
processing.



1. Introduction & overview
Recently, computerized approaches have been ragagloping in the field of medical image

analysis with the aim of providing clinical infortnan, integrating second opinions and minimizing
human intervention. An exponentially growing fistdcomputerized approaches are methods based
on deep learning, with studies showing how deepatewetworks have reached the performance of
state-of-the-art methods in almost all medical imgdields [1], [2].

Deep neural networks are a type of artificial nemetwork that are many layers deep, meaning
there are many layers in between the input andubugyer. The deep architecture allows the
learning of more complex models compared to shalloshitectures, although it also increases the
number of important training parameters, such asniimber of layers and number of units per
layer.

The recent increase in both dataset sizes and dorgpoower have allowed the application of
Convolutional Neural Networks (CNNs) to the speciiase of image analysis, which apply
convolutions on the input image. CNNs are the ncostmonly used deep network, and they are
trained on either the entire image or on image hEsand the important features are learned by
optimizing a specific loss function. During theitiag process, the weights for each neuron making
up a neural layer are learned, and once the tipivase is completed, the trained network is then
used for inference on new images/image patches.

There are many advantages of CNNs compared to tramt#ional methods. Mainly, it provides the
benefit of automatically learning high-level usefiglatures directly without having to extract
handcrafted features, and has a hierarchical featepresentation, allowing these multilevel
representations from a pixel to high-level semaigttures which are learned automatically [3], [4].
Moreover, CNNs can provide a semantic segmentdtiprassociating each pixel of the input
image/patch to a label or class, and there is gporunity to jointly optimize numerous related
tasks together, such as combining both classifinaind bounding box regression [5].

While CNNs are a powerful tool for image analysigere are also some drawbacks. In particular,
deep networks are complex with an enormous amdumaiaing parameters and it can be difficult
to interact with any single layer within the deeggwork. Moreover, deep networks in general are
sometimes viewed as a black-box that does not exfilair predictions in a way that humans can
understand [6]. Still, the advantages often outtvealyge disadvantages and over the recent years
CNNs have become the most commonly used methadage analysis.

A field of medical imaging where CNNs have beereasgively used is digital pathology, in which
histology slides are digitized to produce very higholution images typically of the whole slide

thanks to whole slide digital scanners [7]. Thelysia of histology slides is fundamental for cancer



diagnosis and grading, typically done by an expathologist, and is becoming more and more
complex due to the rise in cancer incidence ancemaspecific treatment options, requiring the
attentive analysis of a large number of slidesaf@momplete diagnosis [8]. Moreover, pathologists
must often extract a number of quantitative paransehat are required for commonly used grading
systems (e.g., cell counting, area, length, peagenof a specific cell presence within slide). &l
these issues bring about a very high inter andaioperator variability [9] and occasionally a
guantitative measure, such as the percentage pdafis cell presence within a whole slide, really
becomes only a qualitative assessment which caendepn the pathologist’'s expertise.

Due to these issues, many computerized technigaes Ibeen developed to process the digitized
histology slides in all of the three main compuiesion tasks, which are: classification, object
detection, and segmentation. All three of theskstasve an image as an input but the output they
provide is differentimage classification has the task of predicting the class or type obbject
within the input image, so the provided outputim@y a class labelObject detection must locate
the presence of various objects with a bounding boxl subsequently classify the located objects
within the input imageObject segmentation extends upon object detection in that the recaghiz
objects are located not by using a coarse bourabmgdout rather by highlighting the specific pixels
of the object. Over the years, numerous deep legmmetwork architectures have been proposed in
the field of digital pathology for classificatior.g., cancer recognition), detection (e.g., mitosis
counting), and segmentation (e.g., nuclei and gaidéntification) in digital histopathological
images. Figure 1 displays the overall frameworkhefse networks for each of the three previously
described tasks. A detailed description of theghmetwork frameworks is provided at the beginning

of each dedicated section (i.e., 4, 5, and 6).
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Figure 1. Typical architectures used in deep learning fraorks: (a) Classification task: starting from the
input image, the network predicts the class lali@l. Detection task: the network locates the objexdts

interest within the image. (c) Segmentation tas&:deep network predicts the objects' contour.

Numerous CNN architectures have been proposedenilitiérature for digital pathology image
analysis [10], [11], [12]. Over time, deeper netkwhave been proposed more to exponentially
increase the capability of extracting high-levahsatic features from histology images [13]. More
recently, studies including integrated or fusedhods between deep learning networks and more
traditional methods of pre and post processing hasen growing in number. These hybrid
frameworks allow a high-level feature extraction #yCNN with the accuracy of conventional
techniques. Occasionally pre-processing techniaqaes be implemented to locate, manage, and
reduce typical artefacts in histopathological insgehereas postprocessing methods are used to
further reduce the prediction errors of the netwdl&twork prediction errors occur either randomly
or due to the intrinsic limitations of the neuraftwork model. For example, in classification tasks,
the spatial interactions between neighboring subges or patches can be employed to correct the
prediction of the network. In detection and segraton tasks, basic image processing techniques
(connected component analysis, morphological opesatan be used along with more advanced or
sophisticated methods (deep fusion models) to britude false positives and reduce pixel-level



prediction errors. Many studies have shown howitiegration between pre and post processing
methods within a deep learning pipeline can all@vfurther increase the performance when
compared to the network by itself [14], [15], [16].

The aim of this review is to provide an overviewtbe types of pre and post processing methods
that are used within deep learning frameworks figital pathology image analysis. The pre-
processing methods shown here are mainly specifibe field of digital pathology, whereas the
majority of the post processing methods can benebei® to numerous other medical imaging fields.
The outline of this review is as follows. Sectiopi2sents an overview of the characteristics and
challenges in digital pathology. Section 3 desaitiee common pre-processing strategies adopted
by deep learning frameworks for histological imamealysis. An exhaustive description of the
general post-processing approaches used for datasgh, detection and segmentation tasks is
provided in Sections 4, 5 and 6, respectively. gcdssion on the methods and future perspectives

of hybrid deep learning frameworks concludes theepa

2. Characteristics & challengesin digital pathology

In order to obtain digitalized histological imagepgecific sequential steps must be followed, which

are typically carried out manually by laboratorghricians [17], [18]. The histological tissue

should be treated to preserve its internal architecand to present an appearance similar to its
aspect inside the living organism (Figure 2). Tokofving protocol is applied to the histological
sample to obtain the corresponding digital imag@:cpllection and fixation, (b) dehydration and
clearing, (c) paraffin embedding, (d) microtomy) &aining, (f) mounting, and (g) digitalization

[19]. All of these steps can generate differenfats that can lower the quality of the histoladic

image:

a) Collection and fixation: in order to preserve the tissue from bacteriaedular enzymes, the
specimen is treated with a fixative to prevent cicairand physical alterations [17]. The choice
of fixative depends both on the tissue and theyaisato be carried out and it is fundamental for
maintaining the appearance of the histologicaligg$-igure 2 - step a).

b) Dehydration and clearing: the goal of this step is to remove the water ftbmtissue to facilitate
the microtomy. If the dehydration is not adequatgdgrformed, water drops can be
microscopically observed, which makes histologgainple regions opaque. As a consequence,
microscopic details may be lost and unexpected ggmim staining patterns of cells and tissue

structures may happen (Figure 2 — step b).



c) Paraffin embedding: in order to evaporate the solvent used in theipusvstep and to fill all the
spaces within the tissue, the sample is embeddidheated paraffin. At the end of this process,
a paraffin block containing the histological samiglebtained.

d) Microtomy: in this step, the paraffin block is progressivegctioned using a microtome [20]. If
the tissue section is not uniformly cut, the samg@bpearance could be compromised. The
optimal thickness is 5 um as it can reveal bothttbgue architecture and cell morphology
(nucleus and cytoplasm). Cellular structures car@otisplayed correctly on thicker sections
(>10 pm) while thinner samples (<2 um) allow onhe tevaluation of the sub-cellular
distributions (nucleoli) [19]. Another common aatit is the folding of tissue, which is caused by
imprecise placing of the tissue sample on the rsmpe slide (Figura 2 — step d).

e) Saining: since the tissue sample becomes translucentrafteotomy, specific dyes are applied
to the histological slice to highlight the cellu@mmponents. The pH and the concentration of the
solution as well as the staining time can influetite appearance of the histological slide [21].
The depth of coloration is related to the lengthimoe the sample spends in contact with the dyes
(Figure 2 — step e).

f) Mounting: in this step, the slices are enclosed with asparent coverslip to protect the tissue
from external agents. Coverslip placement can ggeeartifacts such as the presence of dust
(Figure 2 — step f) or air bubbles or contaminatiotihh microorganisms.

g) Digitalization: in the context of digital pathology, the histolagislides are also digitized using
modern scanners. Sample digitalization can imposeolar variation due to the different
scanning platform (e.g. sensor chips, ambient ithation, bulbs) and acquisition technology
(whiteness correction, image compression). The ajppee of the same physical histological
slide can vary widely using two different scann@figure 2 — step g). In addition, image blurring
can occur if the sample is not aligned with theafq@ane of the scanner. The storage condition
of the histological specimen can also alter the imayhich the tissue interacts with the stain, in

addition to its natural discoloration, causing damples [22].
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Figure 2. Protocol applied to a biological sample to prodimecorresponding histological slide. During this
manual process, various artifacts can be generégdCollection and fixation: the choice of fixadivs
essential to maintain an optimal contrast betweisiolbgical structures. (b) Dehydration and clegrin
example of dehydration fault. (c) Paraffin embeddifa) Microtomy: illustration of a tissue-fold Haict. (€)
Staining: histological sample with too long stamitime. (f) Mounting: specimen with dust contamioat

(g) Digitalization: appearance of the same samigiatized with two different scanners.

Although the color variability of histological spawens only partially limits the interpretation of
images by pathologists, it can dramatically aftbet result of automatic image analysis algorithms
[23]. Previous studies have shown that the perfaoeaof deep learning frameworks for
segmentation/classification of histological imagdsteriorates in the presence of high color
variations within the training dataset [22], [2/45].

One of the biggest problems in digital pathologyngsieep learning is the small number of labeled
images. Although label information at pixel-leveégmentation tasks) or patch-level (classification
tasks) is required to train the deep network, nadstls of whole-slide images are at case-level (e.g
global diagnosis) at most. However, only experhplagists can label the image accurately, and
labeling a huge image, such as a whole-slide imegmgyires a lot of labor [9]. One possible
solution to overcome this problem is to reuse miplready-to-use data such as the popular

ImageNet dataset [10]. In the last few years, sdwdrallenges have been proposed in the field of



digital pathology [26], [27]. However, these puldiatasets are focused on a specific disease or task
and they cannot be employed for other applicat{®hsFor this reason, an "open-data" mentality
should be adopted to increase the number of puatasets and images. Moreover, there is an
inherent challenge due to big data: compared teraotnaging modalities, a digital histological
image of an entire slide can reach enormously laidgeensions. Typically, a whole-slide
histological image can present 100,000 x 100,00 Riixels which contain complex cellular
patterns and contextual biology that carry notabbre information. Despite the attractive qualities
of deep neural networks, it is still prohibitive apply them in huge high-resolution images as the
size of the network is limited mainly by the amoohimemory available on the workstation. In the
field of digital pathology, computer-aided diagreo$CAD) systems have a very high expected
performance, both in terms of accuracy and comjoumaittime. However, a CAD system must also
overcome important computational challenges, iri@dar for real-time applications, such as the
run-time and memory hold-ups due to the processfhdchigh-resolution images (e.g., 40x

magnification).

3. Pre-processing algorithms

The need for a standardization of both procedumed @eagents in histological practice is
highlighted in the study by Lyon et al [28]. Howeyeomplete standardization cannot be achieved
with the current technology, due to manual secatigniariability and stains fading over time. To
minimize visible variability in staining and its pact on diagnostic quality, the current practice is
limited to procedural and physical quality-contnoéthods, such as subjective visual evaluation of
stain quality and interlaboratory staining compams However, the color appearance of
histological samples can still vary significantiyrass laboratories and even across staining batches
within the same lab. These variations in tissue stath appearance complicate quantitative tissue
analysis [29]. In recent years, several techniduae® been proposed to mitigate the artifacts caused
by the manual preparation of histological slidetie§e methods can be grouped into three
categories: i) tissue & artifact detection, ii) istaolor normalization algorithms and iii) patch
selection techniques. Table 1 summarizes all tegopucessing strategies described in this section,
along with the dataset used for their validation.

3.1 Tissue& artifact detection
In whole slide imaging (WSI), the quality of scadneages is an interplay between the condition
of the tissue slide itself and the hardware speatitbns of the scanning device [30]. Tissue artfac

such as bubbles and folds affect the efficiency efhole slide scanning system in selecting the



focus points. The presence of these artifacts caduge blurred or unfocused images [31], [32].
For this reason, information on the location of Vé&ifacts should be known to produce the best
image quality.

Histopathology slides typically contain a tissueaaof approximately 15 mm x 15 mm. Whole
digital slides are captured at an incredibly highalution, resulting in images that can have a size
of up to several gigapixels. Given that processiaxy large images requires a high computational
cost, it is common practice to first identify thide regions that are of clinical interest before
performing a more detailed image analysis. In fdwre are typically large sections of the whole
slide that do not contain histological tissue, vhghould be removed from the detailed image
analysis in order to reduce computational time. tha reason, tissue segmentation is an essential
prerequisite for an accurate and efficient diaghostdigital pathology.

In the last decade, several approaches have bempoged to perform histological tissue
segmentation [33], [34]. Wang et al. [35] and Vamukrghe et al. [36] applied a global threshold to
remove a large portion of non-informative backgmrbuBrtosun et al. [37] employed a hysteresis
thresholding strategy, while Bug et al. [38] condanprior knowledge with morphological filters
for foreground extraction. Arvaniti et al. [39] autatically detected the tissue regions using a
three-step pipeline. A Gaussian filter was initiadipplied to remove noise, followed by global
thresholding to separate tissue from backgroundnTthe detected tissue mask was further refined
using morphological operators. Some authors havelamd a threshold strategy on the optical
density (OD) image and HSV color space [4], [4@r Example, Litjens et al. [4] and Ambrosini et
al. [41] implemented a fixed threshold on the agtidensity of the RGB channels to discard the
background regions. Salvi et al. [16] employed &BRhigh-pass filter to enhance the texture of the
histological tissue. Then, Otsu thresholding andphological operators were applied to obtain the
tissue binary mask. Wang et al. [40] adopted astioll-based segmentation method where the
RGB image of the sample was first converted toHB& color space and the optimal threshold was
calculated for each of the three channels. Thenfitial tissue mask was obtained by combining the
segmentation results of the H and S channels. Rgcerore sophisticated strategies were proposed
to locate the tissue within the histological slid&andi et al. [34] compared traditional techniques
(i.e. those that employ a threshold) with deep otutional neural networks to perform tissue
segmentation. Foreground extraction using CNNs estdpmed simple thresholding strategies,
allowing up to a 6.7% increase of the Jaccard index

However, a good tissue segmentation is not suffidie guarantee satisfying results for a computer-
aided system. When analyzing a WSI, expert patlistograturally avoid tissue regions with

artifacts, so a computer-based system should asabke to both detect and avoid these artifact



regions. Indeed, the performance of deep neuralarkts deteriorates when applied to images
containing artifacts [42]. One of the most commatifacts in WSI is image blur. Image blurring
can occur during the acquisition of a WSI, for epg&nwhen a portion of tissue is not aligned with
the focal plane of the scanner (Figure 2i). Autamdetection of image blur areas can improve the
quality of WSI-based diagnostic pipelines [31]. Gaal. [43] automatically detected out-of-focus
regions using an AdaBoost classifier. Several texteatures were extracted from each image patch
in order to distinguish between in-focus and oufealus areas. Wu et al. [31] proposed a classifier
trained on local pixel-level metrics. Histogramtteas of local blur metrics were then used for the
classification of blurry and sharp image patchelse Tisage of local features instead of global
features increased the blurred image region classiiccuracy by 22%. Blurry regions can be
prevented during the image acquisition stage bggusidvanced scanning systems with dynamic
focus. However, avoiding tissue folds (i.e., whethia piece of tissue folds on itself) is difficuti
prevent during slide preparation. As a result,titbgue section is thicker at these areas, andaa cle
difference in saturation values can be observeddst normal and folded tissue. The folded parts
are remarkably more saturated than the normaldissgions (Figure 2e). Palokangas et al. [32]
proposed an automated algorithm for tissue foldresgation. First, the image was converted to
HSI color space and the intensity and saturatiompmments were processed to enhance the
discrimination of the objective pixels. Then, k-msa&lustering was performed to detect all the fold
pixels. Bautista et al. [44] employed an adaptivdtiag of the RGB values based on the difference
between the luminance and saturation of each inpage. This approach allowed to effectively
outline the presence of tissue folds while presgrthe hue of other tissue structures. Kotharl.et a
[42] proposed an automated method for detectirsgi¢igolds in WSIs using color and connectivity
properties of tissue structures. The strategy stewiof the segmentation of tissue folds in low-
resolution WSIs using adaptive thresholding basedhe connectivity of tissue structures. The
threshold was then combined with a neighborhodéraon to find tissue folds.

The correct detection of tissue and artifacts witthe histological image is essential for the
development of automatic pipelines. CADs can amalyavhole slide in a much quicker way by
processing image regions containing only histolagissue (Table 1). Similarly, artifact detection
is fundamental in that it can allow the exclusioh poocessing regions containing an altered
morphology or intensity (tissue folds, out-of-focueggions, etc). For example, Kothari et al. [42]
have shown that the exclusion of tissue artifacisfprocessing allows increasing the AUC (Area
Under the ROC Curve) of CAD for cancer detectiortap%.



3.2 Stain color normalization

Stain normalization is a common pre-processing stepmost all of the deep learning frameworks
in digital pathology [45], [46]. The procedure ¢dis normalization involves transforming an image
| into another imagéyoru, through the operatiofyory = (1, 6), wheref is a set of parameters
extracted from a predefined template image apylis the mapping function that matches the visual
appearance of a given image to the template imégje The template image is a single image with
the most optimal visual appearance and tissueistpiAs a result, all stain-normalized images will
have their intensity distribution mapped to matah ¢olor distribution of the template image. Based
on the approach employed to normalize the histoldgimage, the current stain normalization
methods can be classified into: (1) Global colommalization, (2) Color normalization after stain
separation, and (3) Color transfer using deep mésvd-igure 3 shows the normalization strategies
used in current deep learning frameworks.

Global color normalization is done after separating intensity and color imfation using different
color spaces. Histopathological images presentautelation coefficients or spatial dependency of
pixel intensity values that make global color nolimaion a very suitable technique. Reinhard et al.
[47] implemented a global color transformation betw the target and source image in dje |
color space using Principal Component Analysis (PQa order to do so, the target image mean
color is transferred to the source image in a wayhat the source image intensity variations are
preserved, and the obtained contrast of the preddssage is roughly the same as the target image
contrast. Another global color normalization tecjua is known as histogram specification [29],
[48]. In this method, the source image histograimmagpped to the target image histogram to make
it, so the color statistics and brightness of therse image resemble those of the target imagér Bot
histogram specification and global histogram enbarent methods employ contrast stretching,
which imposingly stretches the source image histmgto mimic the target image histogram,
producing an unnaturalness in the obtained imalgis. nnatural process may occasionally produce
artefacts in the processed image. Moreover, itdhget and source image present cellular structures
that are very different between each other, thésigafjapproaches based on the image histogram
can ultimately fail in color normalization.

Color normalization after stain separation is carried out by isolating the contribution ofeth
individual dyes used during the staining proces® €olor intensity assumed by the specific cell
component depends on the absorption of the amdustiam, according to the Beer-Lambert law
[49]. The RGB intensity values cannot be directbed for stain separation since the relationship
between the concentration and light intensity ofheatain is nonlinear. Thus, before stain



separation, the source image should be transfomtedhe OD (optical density) space so that they
act linearly [50]. The intensity of the image iret®D space\() can be defined as the logarithm of

the ratio of incidentlg) to transmitted/( light intensity:
I
V =logy, (7") =W-H 1)

According to equation (1), the corresponding ODugadf each pixel can be defined as the product
of the stain color appearance mati¥) (and the stain density mal); By usingW, an image can
be decomposed into each individual stain componé@atgolor deconvolution [51]. The obtained
components can then be altered and recomposedriritnage that appears to contain different stain
amounts when compared to the original image. Indbedecade, several supervised methods have
been proposed to estimate the stain color appearaatrixW [19], [50]. The automated extraction
of the matrix W has been done by using: (i) pridoimation of the stain vectors [52], (ii) singular
value decomposition [51], [53] (iii) support vectorachines [25], (iv) gaussian mixture model [54]
and (v) cellular structures segmentation [55], [96]/]. Recently, unsupervised techniques were
also applied to normalize the histological imag8pectral matching [22], [58], Non-negative
Matrix Factorization (NMF) [59], and Independentr@monent Analysis (ICA) [60] methods have
been employed to estimate both the stain densify thand the stain color appearance matkix
Recently, Gupta et al. [61] proposed a unified ®amrk that corrects stain chemical, illuminant
variation and color quantity by exploiting the colector space’s geometry.

Color transfer using deep networks is done by using a generative learning and stydasfer
approach. Style transfer consists of discovermgge representations that independently model
dissimilarities in the semantic image content aisdsubsequent presented style. In the last few
years, Generative Adversarial Networks (GANs) hé@een extensively used to perform stain
normalization in histological images [62]. GANs adeep networks that take advantage of
adversarial training. Adversarial training consist® generative and a discriminative model trained
through an objective function using a minmax gaifie goal in GANs is learning a generative
distribution Pg(x) that matches the real data distributiBpara(X). The GAN model includes a
generator networls that generates sampl using a noise variable The generator ‘plays’ against

a second network, the adversarial discriminatowaskt D, that tries to distinguish between real

data (x) and generated ones (z). The objectivetiimof the minmax game is defined as:
mGin mDaXV(G' D) = Ex~PDATA [log(Dx)] + Ez~noise [log(l - D(Gz))] (2)
While the generative networls tries to minimize the objective function, the acbazial

discriminator networkD learns to maximize it until both networks arrivietheir optimal state.

Through the above procedure, every stained imagétnbie transferred to have the desired stain-



style. Cho et. al [63] presented a stain-style sfemmethod based on GANs to minimizes the
difference between latent features of the sour@gerand that of the target image. BenTaieb et al.
[64] built a discriminative model with an intrinsgtain normalization component while Shaban et
al. [65] designed a GAN for stain normalizationhaitit the need to pick a template image. Chadaj
et al. [66] proposed a cycle-GAN to correct bottoc@nd style of prostate histological images.
Hence, CNNs can produce powerful deep feature septations that can be exploited to
independently manipulate both the style and cordénatural images [67].

Global color normalization

Source image

Pier;latoxylin channel

' Teplae age

Figure 3. Stain normalization strategies in deep learnirgnfworks. Global color normalization: global
information (e.g. RGB histogram, brightness) isr&stied from the template image and then mappebeto t
source image. Color normalization after stain sajpam: the contribution of the individual dye igliated to
alter the original image according to the colottrilisition of the template image. Color transfemgsdeep
networks: a style transfer approach is employethtnge the stain-style of the source image todimplate
one.

Stain color normalization has been shown to hageeat influence on deep learning frameworks
(Table 1). Almost all the published deep learningtimds for quantitative analysis of histological
images integrate a stain normalization process, [#@]. With color normalization and regardless
of the task or the dataset, we consistently obseavese in the performance of the deep network.



Stain normalization has increased the accuracy ©AR for prostate and breast cancer detection
[45], [53], [56], [63], [69], [70], colon glands gmentation and classification [46], [58], [64], teic
segmentation [57], [71], [72], and mitosis detert[64]. This confirms the need for normalization

in automatic histopathology image analysis.

3.3 Patch selection techniques

Deep learning algorithms are generally applied otiree biopsies or WSIs. However, applying a
CNN directly to a WSI has several drawbacks. Fofsll, discriminative details could be lost due
to the necessity of extensive image downsampliego8dly, a CNN could potentially learn from
only one of the many discriminative patterns in itmage, which would result in data inefficiency
[73]. In histological images, the discriminativdarmation is encrypted in high resolution patches;
for this reason, the key is to train the networktba high-resolution patches and subsequently
predict the label of the entire WSI based on thietplevel predictions. DL techniques learn the
models directly from the provided data, so it isibhost importance to select representative patches
of the image for training. Over the years, sevpedth selection techniques have been proposed to
train deep networks, ranging from random samplingggmentation-guided tiles extraction (Figure
4).

The most common strategy is to split the target Wi a grid and adopt a sliding window
approach to extract all the patches for the CNiimg [41], [74], [75]. When the image presents
classes that are not equally represented, Jiméradz[@6] and Lucas et al. [77] proposed a method
based on randomly extracting a fixed number oflpegdor each class. This allowed the network to
be trained using the same number of patches fdr elass, resulting in the network not being
polarized towards a specific class [78].

For prostate cancer detection, some authors prdposggands-guided patch extraction strategy. In
this way, patches were extracted only within thendular areas, i.e. where prostate cancer occurs.
Zhou et al. [14] performed a glands segmentatiamgues k-means algorithm in the LAB colorspace.
Then, the CNN was trained using only the patchéseted from the segmented glands. Compared
to a simple grid approach, this strategy led toimprovement in cancer detection accuracy of
23.9%. This higher performance can be contributethe fact that the k-means algorithm selected
only the useful malignant glands for the netwogdirting and testing, while the discarded areas by
the k-means algorithm (e.g., stroma, cell cytoplassil nuclei) are not significant for correct
cancer grading. Using an analogous approach, Chah 5] employed a k-means algorithm on
the HSV colorspace to detect the glandular arelasn The CNN was trained and tested only inside
those regions. This patch extraction strategy teduih a 26.9% improvement in cancer detection

accuracy.



Similarly, several authors have proposed a nuclelegl sampling strategy for breast cancer
detection. Since breast cancer distorts the nueldure, shape, and spatial organization, some
authors have proposed a smart patch extractiotdtr training and network testing [79], [80].
These approaches are based on extracting patchewlwmre there is a high density of nuclei, thus
bypassing the adipose and stromal regions [81]ngle¢ al. [80] employed a color deconvolution to
identify the position of the nuclei within the im@agIn particular, non-informative regions
(containing few nuclei or large empty regions) weetected by a threshold of the nucleus number,
thus avoiding unnecessary calculations. This fraamkvachieved a speed-up of 500% of the test-
time inference, while maintaining an accuracy corapke to previously published papers. Xu et al.
[82] presented a deep hybrid attention approadiréast cancer classification. They realized a soft-
attention network that highlighted only the valiabiformation (i.e., clusters of nuclei) within the
image. Then, the patches were extracted only onletected regions. Based on this approach, only
a fraction of the pixels in the raw image was pssee, resulting in a significant saving in
computational resources without sacrificing perfances.

The selection of representative patches has a gngaict on the training of a deep learning model
(Table 1). Compared to the classic grid approa@mart patch selection allows both to increase the
performance of the model [83], [14], [45] and reelwomputational times during the test evaluation
[80], [82].
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Figure 4. Patch selection techniques in deep learning frasmiesy Grid sampling: the image is split into a

grid and a sliding window approach is adopted ttraex all the patches for the CNN training. Smart



sampling: the patch selection is guided by an aatecth segmentation mask to extract images only on

regions of interest (in this case areas containudei).

4. Post-processing algorithmsfor classification problems

4.1 Deep networksfor classification

In the context of deep networks, image classiftcais a supervised learning problem in which a set
of target classes are defined, and a model iseaio recognize them using labeled example
images. Convolutional neural networks (CNN=) be exploited to progressively extract higher
and higher-level representations of the image canie fact, the CNN takes the raw pixel data as
input and “learns” how to extract specific featyrgsch as textures and shapes, and ultimately infer
the object they are a part of. This discovery waseakthrough in the building of models for image
classification, as it precludes the necessity pmcess the data to derive specific features. The
input image of a CNN has dimensiow&HxC, whereW andH are the width and height of the
image in pixels, respectively, ar@ is the number of image color channels. In genexaGNN
consists of a stack of various modules, which geform three operations: @pnvolution, which
creates a filter map by applying numerous diffefétgtrs over the input image; (iReLU (Rectified
Linear Unit) transformation to the convolved featuwvhich introduces nonlinearity into the model
and (iii) Pooling, where the CNN downsamples the convolved featuhéch preserves the most
important feature information while still reducitige number of dimensions of the feature map.
One of the final modules in a CNN is when the ot#difeature map is reshaped into a long vector
and then one or more fully connected layers are@ed) to carry out the final classification task.
The final fully connected layer typically includassoftmax activation function, whose output is a
probability value between 0 and 1 for each clasaiion label the model is attempting to predict
(Figure la). The performance of deep networks rimage classification is generally assessed by
calculating the accuracy. The overall accuracy c@@mon metric used in classification problems
and it is defined as the ratio between the conettissified images and the total number of images.
Recently, CNNs have become the reference algoritomsolving the task of patch-based
classification in medical imaging [84]. Moreovegcent challenge competitions in digital pathology
[84], [85], [86] have shown that CNN-based methoals perform just as well as, if not better than,
pathologists at the task of analyzing histopathiclgimages. Several "standard" deep network
architectures have been employed in the methodsided in the following sections: thAexNet

[10] has five convolutional and three fully conregttlayers with approximately 60 million



parameters. It has facilitated the rapid adoptibrdeep learning by introducing the RelLU as
activation functionsVGGNet [11] is twice as deep as AlexNet and contains rl6%convolutional
layers for a total of 150 million parameters. Titwork showed the effect of the network depth on
performance: deeper architectures allow to obtaghmdr accuracy performance, but also lead to
optimization challenges (training time, computatibpower and storage spac&oogleNet [12]
presents a 22-layer architecture with around Sienilparameters. This network introduced the
“Inception” module that consisted in the concatemaiof convolutional layers having different
kernel sizes. However, in general, as the deptl dkeep network increases, the accuracy gets
saturated.ResNet [87] addressed the problem of Inception networlisubing skip connections
while building deeper models. This network wasfttst to adopt the batch normalization, allowing
to design even deeper CNNs (up to 145 layers) witkompromising the model’s generalization
power.

In almost all the works reported in this revievansfer learning strategies are applied to train the
network. Transfer learning is a method used tosteanknowledge acquired from one task to
resolve another [88], [89]. This strategy can owere the problem of small datasets [90] and, at the
same time, it can help reduce the training timg.[9vo main approaches can be adopted to apply
transfer learning: (i) take advantage of a preatdinetwork as a feature extractor and then use
these features to train a new classifier [92], [934] or (ii) fine-tuning of the pre-trained netvko
parameters according to the new required tasks [96]. Another common technique to improve
results and avoid overfitting of a deep networllasa augmentation. Since histopathological images
do not have a canonical orientation, most of thth@s applied data augmentation to increase the
robustness of their network [97], [98]. The follogiaugmentation procedures were typically used:
flipping, scaling, rotating, color alterations (sattion, hue, contrast, and brightness), additbise)

and Gaussian blurring [99]. Recently, deep netwonkese also employed to perform data
augmentation [100]. Table 2 summarizes all thesdiaation approaches described in this section,

along with their post-processing strategy and ttalshse used for their validation.

4.2 Prostate cancer

Prostate cancer (PCa) is the most common caneeemand the fifth cause of cancer-related death
globally [101], [102]. The need for an accurate gorostic factor stratification has become

mandatory, and the Gleason Score assessment pedasm prostate biopsies is considered the
gold-standard technique. The Gleason Score is e-giimde based score that evaluates the
architecture of neoplastic glands, with 1 reprasgntealthy and well-formed glands and 5

representing the most aggressive gland patternyisgosingle cells and necrosis. However, an

important issue is the reproducibility of its outoe. Several reports in the literature show how the



inter- and even the intra-reproducibility of Gleasscore assessment is very low, and the leading
causes of this variance could be identified boththi@ subjectivity of the evaluation and in its
“simplicity” itself [103], [104], [105].

In recent years, several deep learning methods bese developed for PCa detection [39], [45].
Since pathologists assess a tissue specimen atetiffresolutions to make a diagnostic decision,
Duong et al. [106] proposed a multiscale CNN foogpate cancer grading. In this way, detailed
cellular characteristics can be assessed at arhigbalution whereas the overall tissue structare ¢
be observed with a lower resolution. Then, a pate classification approach was applied to each
image of the test set. Respect to a single-scdleonle the proposed method allowed to obtain a
higher accuracy in cancer detection (95.3% vs 9R.4%pically, a WSI is classified using a sliding
window and a heatmap is generated with the classifin results. Starting from the heatmap, the
algorithm should aggregate the patch-level classtifon and then assign a categorical class for the
entire image (e.g. benign, malignant, Gleason Scei®). In the last few years, several post-
processing strategies have been adopted to aggrégatlassifications of all patches and give the
global class of the WSI [73], [107]. These stratsgican be grouped into two categories:
CNN+voting and CNN+fusion. Figure 5 illustrates th&o most common post-processing
techniques adopted in classification tasks.

The CNN+voting approach consists in evaluating the number of hestcclassified for every
considered class. Subsequently, a ‘voting’ procedsirapplied to determine the final class of the
entire image. For example, Bulten et al. [99] aggbka simple threshold on the percentage of patches
classified as ‘tumor’. If at least 1% of the patetweere classified as tumoral, the entire WSI was
labeled as malignant. Litjens et al. [4] constrdctee normalized cumulative histogram of the
WSI's heatmap, using 100 bins equally spaced betWeghealthy) and 1 (tumor). A percentile
analysis was employed to find the best thresholditale between benign and malignant cases.
Other studies employed majority voting to perforameer grading [14], [75], [77], [108]. In other
words, the final predicted label of a WSI is eqteathe predicted label of the patch with maximum
probability over all other patches and classesndyshis strategy, Arvaniti et al. [39] obtained a
global accuracy comparable with the inter-pathabggreement.

The CNN+fusion approach integrates a supervised decision fusi@ygjregate the classification of
each patch. This is based on the fact that the §dBal class information is not based solely on the
most represented class but also on the spatialbdiBon of the various classes within the heatmap
[73]. Several studies demonstrated that aggregapatgh-level CNN predictions for WSI
classification significantly outperforms patch-Ie@NNs with major voting [73], [109]. Karimi et

al. [15] employed three different CNNs with diffateinput sizes to classify the prostate tissue.



Then, a logistic regression model was used to ohterthe Gleason Score based on the predictions
of the three CNNs. Respect to the single netwdrk,authors achieved up to 10% improvement in
accuracy during cancer grading. Campanella etld0][implemented a recurrent neural network
(RNN) to aggregate the classified patches intoWw#l label while Nagpal et al. [107] applied a
nearest-neighbor classifier that used a summatlyeoheatmap to classify the entire whole-slide. In
particular, the work of Nagpal et al. showed tligt average accuracy of the deep learning system
was 8% higher than that of a cohort of 29 pathalsgi

As can be seen, the main post-processing methogdrostate cancer detection is the patch
aggregation to label the entire image (Table 2yef# strategies have been proposed to assign the
class of a WSI, obtaining a performance improvenoénip to 10% when compared to methods that

do not employ any post-processing.
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Figure 5. Post-processing strategies for classificationgaBkostate cancer grading is used as an explgnator
example. CNN+voting: for each classified patchiating' procedure is applied to determine the fitlaks

of the entire image. CNN-+fusion: this approachgni¢es a decision model to aggregate the clagsiiicaf
each patch and obtain the label of the entire image

4.3 Breast cancer

The most common cancer presenting a high mortahty morbidity among women worldwide is
breast cancer [111]. In the histopathological asialypf breast cancer, pathologists analyze the
overall tissue architecture and distribution ofix@long with the nuclei density and organization.
The nuclear pleomorphism and the spatial arrangeofesellular structures are generally assessed
to distinguish between normal tissue, non-malign@einign), and malignant lesions (in situ or
invasive carcinoma) [26]. Manual examination of dste histopathological images calls for an

intense workload and, on average, there is onl§% diagnostic concordance between specialists



[112]. This motivated the development of automagstems to increase the level of inter-observer
agreement and improve diagnosis efficiency [113].

In the last few years, several deep learning pigslihave been proposed to perform breast cancer
grading [27], [114]. After the deep network traigjrall test images are classified using a patch-
based approach. Recently, several post-processmgges have been proposed to aggregate the
patch-level classifier and generate the image-lelasdsification [115], [116]. Similarly to prostate
cancer, we can divide these strategies into CNNrgoand CNN-+fusion. In th€€NN+voting
approach, simple thresholding or major voting iplegal to the classified patches to choose the label
of the entire image. Cruz-Roa et al. [117] and \&nmkrghe et al. [36] applied an empirical
threshold on the CNN probability map to detect bremmncer. Kohl et al. [115] implemented a
median filter to smooth the probability map andreaB dilation of all the tumoral classes to slightl
decrease the false-negative rate and slightly aser¢he size of tumor regions. Using this approach,
a 1.5% improvement in accuracy was achieved cordparéhe baseline network (VGG). Kovalev
et al. [118] and Litjens et al. [4] applied a fixéareshold followed by a connected component
analysis of the heatmap. All components with a @i@msmaller than a predefined value were
removed to get rid of spurious detection causearifacts (tissue deformation and dust). One of
the most common strategies in CNN+voting approachesjority voting [69], [119], [120], [121].

In this case, the image level label is decided byagority voting on the labels of classified patehe
Different network architectures, such as VGG [12RpsNet [123] and Inception [92], were
combined with major voting to perform breast candassification. Roy et al. [124] considered all
image patches as one unit and assigned to the ithaggass that the maximum number of patches
presented, ignoring many misclassified patchesthla way, compared to the fixed threshold
proposed in [117], the accuracy in image-wise diaation was improved by 2.5%. Araujo et al.
[116] employed a VGG-like network followed by majasting to obtain the final image label from
the individual patch classifications. Ahmad et[8D] adopted the same strategy but with a deeper
network (ResNet), thus achieving a 7.2% increasacturacy. Finally, all the patch predictions
were averaged by Rakhlin et al. [94] and the imlage} class was defined using the maximum
probability score.

The CNN+fusion approaches employ more sophisticated strategiesdgn a label to the entire
image. In fact, the majority of patch-based classifon algorithms (i.e., major voting) predict the
final image label without taking into consideratitme spatial distribution of patches within the
WSI. However, the probability of a patch to be @rngositive is correlated with its surrounding
patches [125]. To incorporate this information imtaleep learning pipeline, several aggregation

approaches have been proposed as post-processpg) [§26], [127]. Le et al. [126] took into



consideration the labels and characteristics ofhi®iring patches by computing an aggregation
operation on nearby patches within a specific disteof the considered patch, which was then used
to compute the final classification probability wal By integrating this post-processing method
within their pipeline, they achieved a 4% improveine the positive predictive value (PPV).
Wang et al. [40] extracted 28 morphological andngewical features for each heatmap of the
training set. Then, a random forest classifier Wai#t using these features to discriminate between
malignant and benign WSI. Liu et al. [78] and Nazgral. [128] employed an ensemble model to
obtain the image-level classification. Since histbplogical images do not have a canonical
orientation, the authors applied for each patch lgferight rotation and rotations to obtain
predictions of 8 different orientations. All the @Bedictions were averaged to obtain a robust
rotation-invariant classifier. This approach all@we improve the image-wise accuracy by 5%
compared to major voting [128]. Similarly, Vangatt [129] first evaluated the class-map for the 8
different orientations separately and then compuatedasses histogram across all 8 orientations.
The histogram data was then used to train a lagistiression classifier to detect different cancer
subtypes. This post-processing strategy achievé® amprovement in accuracy compared to the
baseline score [116]. Couture et al. [127] aggestydihe probability of each patch into a quantile
function and used an SVM classifier to predict thess of the whole image. This post-processing
allowed to obtain an 80% accuracy in breast cagcating. Finally, Yan et al. [98] employed two
different deep networks to perform image-wise dfesdion. First, the entire image is divided into
12 small patches and then feature representatrenexaracted from each patch with an Inception
network. Then, the 12 feature vectors (one for gmthh) is used to train a second deep network to
obtain the final image classification.

The main post-processing method employed in deepnileg frameworks for breast cancer
classification is patch aggregation (Table 2). Thest common strategy is the CNN+fusion
approach, where a classifier is employed to agsignmage label starting from the CNN heatmap.
Compared to baseline methods, this approach achiestveen a 2.5% and 6% improvement in

classification accuracy.

4.4 Other tumors

Different post-processing strategies have also l@egrated within deep learning frameworks for
the analysis of other histological tumors [130]311 For example, one of the currently most
studied histological tumors is lung carcinoma [13&hich is the leading cause of cancer death in
the western world [133]. Treatment for lung canisebased on the grade and stage of the tumor.
Tumor size, single nodules classification, and pinesence of metastasis have shown a very

important prognostic relevance during the assesswielung cancer [134]. Coudray et al. [130]



proposed an Inception network followed by a patghragation approach. Using this strategy, the
per-tile results were aggregated on a per-slides ligsaveraging the probabilities obtained on each
patch. Wei et al. [132] combined a ResNet with @hac heuristic pipeline for the classification of
lung carcinoma patterns. Once generating the heataraa generic WSI, all the patch predictions
with low confidence (e.g. lower than a predefinadeshold) were discarded. Subsequently, the
predominant label was assigned as the most frequiasd, and minor labels were assigned as the
remaining cancerous patterns. The proposed modetatast to tissue staining artifacts and single-
patch misclassifications, thanks to discarding lmmfidence predictions and aggregating over a
large number of patches. Graham et al. [135] engulog ResNet with two different post-
processings: majority voting and random forest. dMgj voting simply assigned the class of the
WSI as the one with the largest number of posipaé&hes in its corresponding probability map.
For the random forest model, several morphologacal statistical features were extracted from the
heatmap to train the classifier and assign theadtv&/Sl classification. The ResNet with random
forest obtained the highest performance comparadajority voting, with a 3% accuracy increase.
Wang et al. [35] proposed different patch aggregaihethods to classify lung WSI, ranging from
simple voting approaches to random forest moddis. Best performing method combined the deep
features extracted from each patch into a globstm&or vector. Then, the feature vector was fed
into a random forest classifier for WSI-level pi&din. This approach provided an effective holistic
representation of the entire WSI, allowing for a42% improvement in accuracy over majority
voting. Finally, Li et al. [136] implemented a deemdel followed by conditional random fields
(CRFs) for lung cancer detection. CRFs were adopgtednoise elimination and boundary
smoothing of the tumor contour. Using this stratethe authors obtained an 11% accuracy
improvement compared to the single deep network.

Another commonly studied tumor with histologicalabysis is colon cancer. Colon cancer is the
fourth most common cause of cancer death overfédir(aing, stomach, and liver) and it represents
the second most common cause of cancer in womerthenthird most common cause in men
[137], [138]. Korbar et al. [131] proposed a colde polyp classification on WSI using deep
learning. Using majority voting, the most commonocectal polyp class among the associated
patches was used to label the entire WSI. Siringtama et al. [139] proposed a post-processing
based on neighbors to classify colon cancer higjolmages. The authors proposed a neighboring
ensemble predictor to be used in conjunction wigteendard CNN. Based on spatial ensembling,
this predictor leveraged all relevant patch-baseediptions in the local neighborhood of an
extracted tile, which in turn produces more acauddassification results than its single-patch tdase

counterpart.



Xu et al. [140] and Hou et al. [73] proposed diffier strategies for brain tumor detection in
histopathological images. In particular, Xu et[210] combined a deep convolutional network with
an SVM classifier to obtain the final WSI predictioHou et al. [73] employed different post-
processing strategies to aggregate the patch-tdassification into the WSI label. Their CNN was
combined with major voting, SVM and a logistic reggion model for brain glioma classification.
The authors achieved the best results with thestiegregression model, obtaining an accuracy
increase of 3.5% compared to a simple major vadimdjan increase of 5.6% compared to the SVM.
Also in cases of other cancers such as lung omatdocer, the main post-processing strategy is the
aggregation of the patches using the CNN softmi&vwed by a classifier (Table 2). This strategy
allows to increase the performance of the DL mbgealp to 27% compared to other techniques.

5. Post-processing algorithmsfor detection problems

5.1 Deep networksfor detection

Image classification networks classify entire ima@e patches into only a single category, that
typically corresponds to the most salient objecbwver, assigning a single label per image
presents numerous drawbacks, such as not allowirspatial localization of the object and
precluding important information about the numbérobjects within the image. Hence, object
detection network models are more appropriate tate and identify multiple relevant objects
within the same image. A generic object detecperforms an instance segmentation, where each
existing object is located and labeled with rectdag bounding boxes (Figure 1b). The
performance of deep networks for detection taskgererally assessed by calculating the F1-score.
The F1-score is a measure of accuracy and it culeded as the harmonic mean between precision
and recall [141]. A deep network for object detactcan follow two different approaches: region
proposal and regression/classification (FigureR&gion proposal frameworks follow a two-step
process, in which a traditional object detectiopepie initially generates all region proposals and
then classifies each proposal into different catego of objects using a deep network.
Regression/classification frameworks regards object detection as a regnessrioclassification
problem, adopting a unified framework to achievalfiresults (categories and locations) directly.

In the last few years, several CNNs have beengseteéor object detection challenges [3]. Hie
CNN model [142] combines the selective search methdd][to detect region proposals and a deep
network to find the object in these regions. Thikeda/e search generates around 2000 region
proposals using bottom-up grouping to reduce tlaechéng space in object detection. Then, high-
level features are extracted from each region usipge-trained CNN and they are fed into a simple

classifier (e.g. SVM) employed to recognize eaclovkm class. However, the whole detection



framework could not be optimized in an end-to-erahner, making it difficult to obtain a global
optimal solutionFAST R-CNN [144] andFASTER R-CNN [145] are the evolution and the extension
of R-CNN networks. They were designed to speedath braining and testing time of traditional
R-CNNs by introducing a CNN in the region propoggbeline. For regression/classification
approaches, a widely used network is the YOLO m¢t4b]. This architecture employs a single
end-to-end trained neural network that takes thegamas input and directly provides the location
and class labels for each bounding box. The folhgwgections go into specific detail on how these
networks have been integrated within deep learfrengeworks for histological structure detection.
Table 3 summarizes all the detection approachesriied in this section, along with their post-

processing strategy and the database used fontdelation.

5.2 Lymphocyte detection

Lymphocytes are a subtype of white blood cells plag an important role in the immune system,
where an immune response is characterized by lyoyicoinfiltration, in which the lymphocyte
density greatly increases at sites of diseaserergio bodies [1]. Accurate detection and assessment
of lymphocyte presence in cancer can potentialgwafor the design of new biomarkers to help
monitor the rapid progression of a tumor [147]rexent studies have shown how the lymphocytes
can serve as a fundamental biomarker to predioiceli outcomes and treatment response [148],
[149]. Lymphocytes present a similar appearanaceetionuclei in terms of hue, often making them
difficult to be differentiated. Typically, howevedymphocytes tend to be circular, more
chromatically dense, and smaller [1]. In recentryeseveral automated tools have been developed
to localize and quantify the density of these immaugalls with the aim to predict the presence and
development of metastases and the overall surgiidle patient [147].

The most common strategy to detect lymphocytes istological images is the segmentation
through object detection which output bounding lsoaeound objects of interest (cells). These
methods implement a CNN as a two-class (e.g. lyroyles, background) classifier to detect these
cells in a patch-wise manner using a sliding wind@®0]. By applying the CNN across an entire
image, a heatmap is generated that indicates thieapility of each pixel being a lymphocyte
(probability map). Still, the obtained heatmap dowed allow for a precise localization of the
lymphocytes and the results are often unsatisfaatdren there is a cluster of cells very close to
each other. Hence, it is necessary to implemernttgrogessing techniques to correctly identify the
center of each lymphocyte.

Janowczyk et al. [1] applied a convolution with iakdkernel to the probability map in order to
highlight the center of each lymphocyte. In thistimoel, the highest point in the probability map is
taken as the center of a lymphocyte and the radigkeared. This is done in an iterative manner,



and the considered radius is the same dimensian tgpical lymphocyte. The dimension of the
radius is of critical importance, as the radiusdset® be large enough to ensure that there is only
one prediction per nucleus, but at the same tinse amall enough so as to not suppress a
neighboring cell’s nucleus. This technique preventdtiple centers from being recognized for the
same lymphocyte and allowed for a 6% TPR (TruetResRate) incrementation and a 23% PPV
(Positive Predictive Value) increase. On the otteerd, Saltz et al. [151] applied a simple threshold
to the heatmap to locate each lymphocyte. TherJ kmatial features [152] were extracted from the
detected cells to associate the lymphocytes’ mfitbn with molecular readouts and clinical
outcomes. Bidart et al. [153] chose to employ amaxima suppression (NMS) algorithm to locate
the center of each lymphocyte. The NMS algorithmilarly to the method by Janowczyk et al.
[1], is based on the assumption that the pointghim heatmap with the highest probability
correspond to the center of the cells. Similarlylip the pixels with the highest cell probabildye
found in an iterative manner and then the pixelmébwithin a determined radiusare set to zero.

In this application, the optimal value ofvas found empirically by looking at the distrilartiof the
distance from a nucleus to its closest neighbom@ared to a SVM classifier, this method was able
to achieve an improvement of 7% when consideringuiacy, and a 13% sensitivity and 6%
specificity improvement. Finally, Li et al. [154Hopted a region proposal framework to detect the
lymphocytes by combining a CNN with a dual morplgatal operation and distance transform.
Dual morphological grayscale reconstruction [155swadopted to highlight the cell from the
background and a H-maxima transform after distareoesform was employed to locate the center
of each candidate cell. Then, a CNN was used tssiflaeach region proposal in two classes:
lymphocyte and non-lymphocyte.

Several strategies have also been proposed for de&ection of |ymphocytes in
immunohistochemical (IHC) images. Chen et al. [1p6bposed a CNN combined with color
deconvolution to locate these cells. Sparse calarixing was performed to separate the image into
DAB and hematoxylin channels using Ruifrok colocae®volution [52]. Then, the heatmap of the
lymphocytes’ location was obtained using a patcbewslassification on the DAB channel and a
non-maxima suppression algorithm was used to yteddfinal detection. A similar approach was
adopted by Garcia et al. [157], where an NMS atgoriwas employed after a CNN to locate the
immune cells in gastric cancer IHC images. SwideiGkadaj et al. [158] employed a YOLO
architecture, where during inference, predictednoing boxes with an overlap are considered as
detecting the same lymphocyte using a non-maxinpgresgsion algorithm. Rijthoven et al. [13]
proposed a modified version of the YOLO model fog tetection of the lymphocytes in WSI's of

colon, breast and prostate cancer. In this ardbitec named YOLLO (You Only Look on



Lymphocytes Once), the grid cell used for predictieas forced to be 32x32 pixels and the number
of convolutional layers was reduced from 23 to 8onder to simplify the entire model. The
proposed modifications, namely guided samplingtefyya and simplified architecture, allowed to
increase the detection performance of 3% and gaispeed of up to 4.3 times quicker during
inference time compared to the traditional YOLO mlodh another work, Swiderska-Chadaj et al.
[147] adopted a YOLLO network followed by non-masinsuppression. The proposed method
allowed to distinguish well the cells in clusteeghieving an improvement in F1l-score of 8%
compared to a simple CNN.

As can be seen, the most common post-processingothén lymphocyte detection is the non-
maxima suppression algorithm (Table 3). Startimgnfthe CNN heatmap, this technique allows to
accurately detect the location of each lymphocytd has shown an improvement in detection

performance up to 8% compared to methods that temploy any post-processing.
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Figure 6. Post-processing strategies for detection taskmphpcyte detection is used as an explanatory
example. Classical detection framework: the CNNrheg is created in a patch-wise manner using anglid

window approach. Then, the non-maxima suppres$idnS) algorithm is employed to locate each object.
Region-proposal framework: a selective search geeerthe regions' proposal and the NMS algorithm

deletes overlapping regions to locate the boundimgof each object.

5.3 Mitosisdetection

Mitosis is a process of duplication where a singé divides into two genetically identical
daughter cells. Precise quantification of mitofigufes is one of the most important prognostic
factors in cancer grading as it gives an assesswifetite tumor proliferation [159]. However,
mitotic count is time-consuming and difficult duwethe variations in morphological appearance of

mitotic cells. These variations are caused by warifactors including the non-uniform stain



variation, mitotic phase, irregular illumination cartissue damage during the slide preparation
(Section 2).

In recent years, there has been a growing intanetste development of fully automatic solutions
for an accurate and precise quantification of theotn activity [1], [160]. Ciresan et al. [161]
proposed a CNN as a pixel-wise classifier to deteitbsis with a sliding window. However, this
approach was very computationally expensive, makhey algorithm not practical in clinical
settings. To overcome this limitation, several mdghproposed a patch-wise approach [1], [162],
[163], [164]. These methods employ a CNN on théreminage that outputs a heatmap indicating
each pixel's probability of belonging to a cellnmtosis. In order to correctly locate all the mitot
events, different post-processing methods have bpphed to the probability map. Janowczyk et
al. [1] convolved the heatmap with a kernel diskl agentified a mitotic event as those image
locations that were above a certain probabilityeshold. Chen et al. [162] computed the local
maximum of the heatmap while Akram et al. [165] émgpd the NMS algorithm, with a distance of
50 pixels, to remove duplicates. These strategibgeged an improvement of the F1-score equal to
13.1% and 16%, respectively, when compared to a @Mhout any post-processing. Saha et al.
[164] proposed a deep architecture model reintbveg¢h handcrafted features. The combination of
handcrafted (HC) features with the high-level oeggacted by the CNN allowed to increase the
overall accuracy of the classifier up to 14%. Zeroet al. [160] adopted a majority vote to
perform pixel clustering inside the heatmap. Al ttlusters containing fewer than 30 pixels were
discarded, and the final prediction was taken ascéntroid of each remaining cluster. Finally,
Albargouni et al. [163] implemented a multi-scaldXCfor mitosis detection, combining the output
probability of three different CCNs. The input ineagras downsampled to different scales (i.e.
0.33, 0.66 and 1) and three different networks weamed for each downsampled scale. Then,
during inference time, the final positive respomges obtained as the average of the three output
probabilities from each single CNN. Using this nadale approach, an overall improvement in the
F1-score of 22% was observed compared to the sgoglie CNN.

Given the fact that a patch-wise approach can bgpatationally demanding and time-consuming,
some authors proposed a two-step strategy, bydestcting all nucleidgtector step), and then
classifying each nucleus separately as mitotic on-mitotic (discriminator step). Different
techniques have been applied to detect candidatieintanging from k-means and blob analysis
[166], blue-ratio binary thresholding [167], actigentour models [168] to deep neural networks
[169]. Wang et al. [170] applied a Laplacian of Gsian filter followed by a fixed threshold to
identify all the candidate nuclei. Then, a casocadagemble of CNNs and handcrafted features were

adopted for mitosis detection. This nuclei sampbt@tegy, along with the combination of CNN



and HC features, allowed to both reduce the contiput time at test time and to obtain a 4.81%
improvement of mitotic form detection. Rao et dl7]] and Li et al. [172] proposed a modified
version of the FASTER-RCNN tuned for mitosis datatt with comparable speed of previous
CNN models and more accurate localization. Smallndang boxes were discarded, and region
proposals were further refined using an NMS alganitwvith fixed threshold as post-processing. In
another work, Li et al. [173] proposed a more redirpost-processing to their strategy. Starting
from the heatmap, the mitotic cells were found gsirheuristic method. Firstly, a smoothing and a
binary processing were applied to the probabiligpmaiming to yield the detected blobs. Then, a
morphological filtering step based on the confidescore and area of the segmented objects was
employed to delete false-positive shapes. Thistegfyawas able to obtain up to a 9.27%
improvement of the Fl-score with respect to presipipublished methods. In a recent work,
Mahmood et al. [174] employed a FASTER-RCNN folloW®y a post-processing based on textural
features. First-order statistical features, localaby pattern (LBP) and histograms of oriented
gradients (HOG) were adopted to reject false pasishapes detected by the deep network. This
strategy led to an improvement in the F1-scoredofcompared to the single CNN.

Similarly to lymphocytes detection, the clusterstgategies applied to the CNN heatmap (NMS,
majority voting, local maxima) are the main postgessing methods employed in mitosis detection
(Table 3). Compared to the single CNN, these teples have shown an accuracy improvement of
up to 17%.

6. Post-processing algorithms for segmentation problems

6.1 Deep networksfor segmentation

The task of segmentation is the requirement ofrdgfig a precise boundary of the desired objects
(e.g. histologic primitives such as nuclei, tubulegithelium, etc). This is done so that accurate
morphological features can subsequently be extiafctan the segmented object. Detection tasks
(i.e., mitosis and lymphocyte detection) differfresegmentation tasks in that in order to detect an
object, precise boundary or contour determinatgonat necessary, as the goal is typically to only
identify the center of the region of interest. Hus reason, segmentation typically tends to beemor
challenging than detection since each pixel issdi@sl into instances, each instance (or category)
corresponding to an object of the image. A gensegmentation pipeline performs a semantic
segmentation, where each pixel of the image isiflad into meaningful classes of objects (Figure
1c). The performance of deep networks for segmientgbroblems is generally assessed by
calculating the F1-score and the Dice score. Thee Btore measures the spatial overlap between

two binary shapes [175].



A semantic segmentation architecture can be thoofl#s an encoder network followed by a
decoder network. The encoder network is typicallpra-trained CNN such as ResNet/VGG
designed to extract high-level features from thputnimage. The decoder network aims to
semantically project the discriminating charactesss(lower resolution) learned by the encoder on
the pixel space (higher resolution) to obtain asdedassification [176]. Basically, the idea is to
scale up, the scale down effect made by all thedsgrcdayers. Based on the decoding mechanism, a
semantic segmentation network can follow two apghnea: region-based segmentation or fully
convolutional network-based segmentatidrRegion-based semantic segmentation follows the
“segmentation using recognition” pipeline, whichsfiextracts the regions containing the object.
Then, region-based predictions are transformed pitel predictions, generally by labeling each
pixel within the ROI. On the other harfd|ly convolutional network (FCN) semantic segmentation
learns a mapping from pixels to pixels, withoutragting the region proposals [177].

In the last few years, two deep architectures eo®me popular for medical image segmentation:
MASK R-CNN and UNET.MASK R-CNN is an evolution of the FASTER R-CNN architecture
(Section 5.1) specifically designed for pixel-legelgmentation [178]. The MASK R-CNN is a R-
CNN with three output branches: the first one cotepuhe bounding box coordinates, the second
one computes the associated class and the lasbomgutes the binary mask to segment the object.
The particularity of the MASK R-CNN model is its iittask loss combining the losses of the
bounding box coordinates, the predicted class hadégmentation mask. The model tries to solve
complementary tasks leading to better performanoesach individual task. THéNET model was
proposed by Ronneberger et al. [5] and it was §ipalty designed for biological microscopy
images. This architecture is composed in two paatscontracting part to compute features
(downsampling) and an expanding part to spatiabate patterns within the image (upsamping).
The downsampling subnet has an FCN-like architectbat extracts features with convolutional
layers while the upsampling part uses up-convatutereduce the number of feature maps while
increasing their height and width. Cropped featueps from the downsampling part of the network
are copied within the upsampling part to avoidrgspattern information. The following sections
will describe in depth how these segmentation nksvbave been employed to comprehend the
spatial relationships between histological struegwwithin the image. Table 4 summarizes all the
segmentation approaches described in this seaiong with their post-processing strategy and the

database used for their validation.

6.2 Nuclei segmentation
Accurate nuclei segmentation is a crucial stepaincer analysis and grading [68]. During cancer
diagnosis, pathologists analyze biopsies to makgnustic and diagnostic assessments, mainly



based on the nuclei morphology and their spatiehngement. In this context, an automated
algorithm could assist the pathologist to obtaihabde and quantitative statistics about cell
morphology. However, the automatic segmentatiocadf nuclei is a challenging task due to the
extremely variable shapes and sizes of overlappirtgi, as well as weakly defined boundaries and
different staining methods. Nowadays, the currdmatlenge is to precisely define cell boundaries
or/and divide overlapping nuclei [179].

To solve this problem, several algorithms basedi@sp learning have been proposed to obtain an
accurate segmentation of nuclei in histopatholdgiceages [1], [180]. These strategies can be
grouped into two categoriesvo-class pipeline andthree-class pipeline (Figure 7). In the two-class
pipeline, the CNN is employed for binary segmenotat(nuclei vs background) while the deep
network also estimates the cell boundaries inlingetclass pipeline.

In two-class pipelines, authors employed a simpkedfthreshold on the CNN softmax to detect the
nuclei boundaries [181], [182]. Pan et al. [183plemented a series of morphological operations as
postprocessing to improve the segmentation perfocmaAfter the thresholding, morphological
cleaning and hole filling were applied to reduceoes due to image artifacts and background
clutters. Hence, all regions detected with an deea than a predefined value were eliminated as
they were considered too small to be cell nuclern8pudi et al. [184] combined a superpixel
approach with CNN binary segmentation (nuclei vskigeound) to perform cell segmentation.
Their approach required a reduced memory when coadpep pixel-wise approaches and also
reduced the number of parameters to be tuned, shemkhe superpixel (i.e., a group of similar
pixels) classification. However, these approachesa completely solve the problem of clustered
and overlapping nuclei.

Recently, more sophisticated post-processing teciesi were proposed to perform individual
nuclei detection [71], [185]. The framework propodsby Xie et al. [71] adopted a stain
normalization followed by MASK R-CNN and watershed post-processing. The watershed
transform was used to separate touching cells. dJis post-processing, the Dice score was
improved by 2.06% with respect to the single nekw&ong et al. [186] proposed a CNN followed
by a graph partitioning model to refine the nudegmentation. The method consisted of three
parts: 1) CNN to obtain feature representation angreliminary pixel-level segmentation; 2)
superpixel and graph cut to accurately segmemntictei boundaries; 3) marker-based watershed to
separate clustered nuclei. Xing et al. [187] apblaa optimized post-processing on the CNN
probability map to detect individual nuclei. In peunlar, a selection-based sparse shape model and
local repulsive deformable model combination wasdugs a segmentation algorithm. This specific

deformation model effectively segmented nuclei weitiher weak or missing boundaries. Jung et al.



[72] employed a MASK R-CNN followed by multiple erfence as post-processing to boost
segmentation performance. A total of seven augndeim@ges including the original image were
generated and used as the input for multiple infeeThen, majority voting at the pixel-level was
performed on the seven images and all the pixels avscore higher than 50% were selected as the
final segmentation result. This strategy allowednirease the F1-score by 3.3% and the average
Dice score by more than 11%. Naylor et al. [185)pmsed a post-processing method based on
distance map to handle the issue of touching ahjélthe authors employed a UNET model to
predict the distance transform of the cells insteadlirectly predicting the nuclei binary mask.
Then, local maxima were founded, and a simple Huieéng operation was employed to obtain
object pixels. Chen et al. [188] proposed a noeepdcontour-aware network to cope with the issue
of merged nuclei. This network combined nuclei §porind and edge information to obtain
instance segmentation results. Post-processing $tejuding smoothing, disk filtering and hole
filling were performed to remove small spurious emitg. Recently, Wan et al. [189] proposed a
CNN followed by a concave point detection algorithmaccurately segment highly overlapping
nuclei. This post-processing improved the perforceain separating clustered and touching nuclei
by more than 8% (Dice score) compared to simplestiwlding.

Some authors have tried to solve the problem oflapping nuclei by designing CNNs that predict
both objects and their contours (i.e. three-clagpwd: inside, contours, background) [180], [190].
Kumar et al. [180] employed a three-class CNN gnsent the cell nuclei. A region growing on the
inside probability map was initialized as post-msging. Seeds were found by thresholding the
inside class map at 0.5. While the seeded regiowgrthe average boundary class probability of its
contour pixels increases, while their average msithss probability decreases. The nuclei are
stopped from growing when the average boundarg @asbability of the pixels on the border of an
area reaches a local maximum. This approach achi@¥9% Dice score increase when compared
to a simple two-class CNN. Cui et al. [190] progbsenuclei-boundary model to was applied to
each connected component to recover the shapeg thsspost-processing, an improvement of 5%
of the Dice score was observed. Zeng et al. [181jleyed a three-class UNET model to segment
cell nuclei. Since the predicted nuclei had mangriapping cells, a post-processing technique was
implemented to refine the segmentation mask. Fjriie inside and contour probability maps were
thresholded at 0.5. The contour mask was subtrdiiedthe inside mask and each cell was dilated
using a disk template of 3 pixels-radius. This pssing resulted in an increase of 2% of the F1-
score compared to the standard UNET model. FinXlig, et al. [192] designed a network with
multiple segmentation tasks for learning the fooegd, marker, and interval of nuclei,

simultaneously. The foreground result is then egfimising logical operators thanks to the learned



interval between overlapping nuclei. Then, the hwg nuclei were split thanks to a marker-
controlled watershed algorithm using the learnedkeraresult and nuclei segmentation. Compared
to other deep networks and different post-procgssirthods, this strategy achieved an increase in
the F1-score of up to 17%.

As can be seen, the main issue when segmentinginsicell separation (Table 4). The main post-
processing methods involve the use of a third Chssc(boundary mask) to carefully separate the
touching nuclei. These strategies allow to imprpeeformance up to 11% compared to methods

that do not employ any post-processing.
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Figure 7. Post-processing strategies for segmentation taSkdl. nuclei segmentation is used as an
explanatory example. Two-class pipeline: a CNN mpeyed for binary segmentation (object vs
background). Then, traditional techniques (morpbiclal operators, watershed transform) are empldged

refine the segmentation. Three-class pipeline: ep detwork is implemented to segment both objeats a
their contours. Then, more sophisticated strateglieh as connected component analysis are emptoyed

perform individual object detection.

6.3 Tubulesand glands segmentation

A typical tubule/gland is composed of a lumen a@aounded by a ring of epithelial cells. In later
stages of cancer, the tubule regions become massivsorganized [193]. Tubule and gland
morphology is routinely used by expert pathologitstsassess the cancer malignancy degree in
several epithelial tissues such as prostate, braadtcolon [194]. In order to obtain reliable
morphological statistics for a quantitative diagepsthe tubules/glands must be accurately
segmented in histology images [1]. However, thgk s non-trivial due to the large variability in
glandular morphology as well as the existence afchiing and poorly defined structures in

pathological conditions.



In the last few years, several deep learning metthade been proposed for the gland segmentation
task from pathology images [195], [196]. Tang et[497] and Bentaieb et al. [198] proposed an
encoder-decoder CNN to segment colon glands iropashological images. Starting from the
softmax, the authors applied a global thresholtiingegment all the glandular regions. De Bel et al.
[199] employed a similar approach to segment thmlréubules. The CNN softmax was first
thresholded at 0.9 likelihood and then a connectadponent analysis was employed to remove
objects smaller than 300 pixels. Rezaei et al. [2pplied more robust post-processing methods to
segment the glands contours. Firstly, the Otsu atetias used to estimate the best threshold and to
produce the segmentation binary mask from the fwibtyamap. Then, the final solid segmentation
was obtained by using morphological operationshenbinary mask for denoising and filling holes.
Ren et al. [201] implemented an encoder-decodevarktto segment the prostate glands. Since the
semantic segmentation can be less accurate nege ifarders, the authors proposed a post-
processing step to retain the boundary informataring inference time. Specifically, a mirror
border of 320 pixels was synthesized in each daecand the CNN was applied in a sliding
window fashion. Only the center of each output imags used to form the seamless segmentation
mask. Using this strategy, the global precision wagroved by 1% with respect to the single
segmentation network. In order to separate toucglagds, Qu et al. [202] proposed a three-class
CNN that predicted both the contour and the glasrdmner regions simultaneously. Starting from
the three-class segmentation map, the final seg@tnentwas obtained by connected component
labeling, removing small area objects, and dilatiitly a disk filter.

Xu et al. [196] tried to solve the issue of touchgiands by combining three different CNNs. The
first network was designed for foreground segméntatthe second was optimized for edge
detection while the third was employed for the dete of individual glands. The features
generated by the three deep networks were condateby a CNN that produced the segmented
instances. The combination of regional, boundanyg, lacation information allowed to accurately
split and segment the colon glands. Chen et aB][fiBoposed a novel deep contour-aware network
that both depicted the gland object contours angutisegmentation probability maps. To separate
touching glands and output the final segmentedcblgad contour masks, features maps from
hierarchical layers were upsampled with two differeranches. Hole filling, smoothing, and small
area removal were applied to the segmentationtrasdl each connected component was labeled
with a unique value for representing one segmegtadd. A similar approach was followed by
Graham et al. [203] for colon glands segmentatidme authors applied a threshold of 0.5 to all
predicted probability maps. Then, a morphologicaéring operation is used with a disk filter

radius 5 to obtain the final result. Binder et [204] employed a deep network for multi-organ



gland segmentationAfter stain normalization, the histological imageasvfed into the CNN,
obtaining two probability maps: contour and innegions. Both of these maps were then
thresholded with two present threshold values, ltieguin two binarized masks relative to the
contour and glands. Afterward, the contour mask sudgracted from the binarized gland mask to
separate overlapping glands, so that individualdgavere accurately identifieBinally, the gland
mask was dilated using a disk element with a radqsal to the thickness of the contour mask to
retrieve the boundary information. After this ppsbcessing, an improvement of the Dice score of
3% and a reduction of the Hausdorff distance etu&0% was observed. Recently, Ding et al.
[205] proposed a three-class CNN (background, gndct, gland boundary) followed by an ad-
hoc post-processing. In particular, the probabititstp of the gland boundary was subtracted from
the gland's interior probability map. Then, segradnglands were obtained by thresholding the
resulting probability map with a fixed value of ORnally, a morphological dilation using a disk
template of 5 pixels-radius was used to obtaincurate gland contour.

As can be seen, the main post-processing methodsbirles and glands segmentation are the
morphological operators applied on a three-classNGN precisely define tubules and glands
boundaries (Table 4). These approaches have shoparfarmance improvement of up to 20%

when compared to methods that do not employ antosessing.

7. Discussion

This paper aims to provide an overview of the npaim and post processing techniques adopted in
deep learning frameworks in digital pathology. De&marning algorithms, in particular
convolutional networks, have rapidly become themmaéethodology for analyzing medical images.
However, it is not trivial to manage the networlegliction errors as they can occur randomly or due
to the chosen network model. In the last few yeaeveral authors have started to integrate
traditional pre and post processing methods witkepdeetworks as a tool to increase the
performance and robustness of their approaches [@H] [64], [162], [182]. Different from other
reviews which typically focus on specific applicats, this review focuses instead on the impact of
different pre and post processing methods thaingpéemented within deep learning frameworks to
deal with the very complex patterns of histologicahges. Many of the techniques presented here,
especially the post-processing methods, are natelihonly to histological image analysis but can
be applied to almost any image analysis field.

Regarding pre-processing strategies, the most comadgorithm adopted in digital pathology is
stain normalization. The stain normalization pracetandardizes the stain color appearance of a

source image with respect to a reference image.clinent stain normalization methods can be



based on different approaches, ranging from glaoébr normalization to color transfer using
generative adversarial networks (GANSs). The statidation of histological images lets the deep
network learn not only the certain color distriloati but also the histopathological patterns.
Moreover, including the stain normalization premssing gives forth more stable performances
both on the train and test sets, especially ifddia come from different centers and therefore with
variability of stains, scanners and sample premard63]. Numerous studies have also shown how
including this preprocessing steps gives forth éigherformances when using deep networks [56],
[57]. Another crucial preprocessing step during CNidining is patch selection. Different
traditional algorithms based on thresholding, caleconvolution, and active contour models have
been employed to identify the regions-of-interesivhich to extract the CNN patches. Selecting
patches only within specific regions of interest arot over the entire image increases the overall
accuracy of a CNN as patches only containing sicant information for the particular problem are
analyzed. In particular, these approaches procelysaofraction of the pixels in the raw image
avoiding unnecessary calculations without sacrificperformances. Various studies have shown
how a smart patch selection allows both to redumeputational times during inference and
increase the model performance [79], [82]. Finalfen processing whole-slide images (WSIs), it
is fundamental to correctly detect the histologitssue and the various artifacts that can occur
when preparing the histological slide (Section Qyer the years, several strategies have been
proposed to perform histological tissue segmemtatiad artifacts detection, mainly based on
changing the color space and adaptive thresholfB2y An accurate detection of tissue and
artifacts lets a CAD program process a whole sijdieker, by excluding the background regions
and avoiding regions that contains an altered naqgy or intensity. Moreover, integrating these
preprocessing strategies within a CAD pipeline atgneases the performances of a deep-learning
method [61], [66].

As for post-processing strategies, we focused bthalthree main tasks in computer vision tasks:
classification, detection, and segmentation. Durtigssification tasks, a CNN is generally
employed to predict the class label. In this revibet is specifically focused on digital pathology,
the main classification tasks considered were ckggrmrostate, breast, liver, and colon cancer. The
main post-processing method applied during imagessdication is patch aggregation. A patch
aggregation approach takes into consideration tiaeacteristics and the labels of all the patches
extracted by the CNN to predict the final imageelali hese strategies can adopt a simple voting
procedure (i.e. max voting) as well as more soaitedd models, such as random forest or nearest-
neighbor classifiers. Aggregating a large numbepaithes to predict the entire image class makes

the deep learning model more robust to low-configenpredictions and single-patch



misclassifications. Several studies demonstratatl ttie use of a patch aggregation strategy as a
post-processing method improves the performancen afeep learning framework for cancer
detection and grading [15], [128], [136].

Regarding detection tasks, a deep network is giyesdopted to locate the centroid or the
bounding box of the objects of interest within theage. Here, the main focus was put on the two
most common detection tasks in histopathology: Ilyagyte and mitosis detection. The main post-
processing in deep learning-based detection framems the non-maxima suppression (NMS)
algorithm, which is an iterative method that takasinput the regions’ proposal provided by the
network and provides a list of filtered proposdlkis specific post-processing allows the removal
of overlapping bounding boxes while maintainingighhevel of sensitivity. The integration of the
NMS algorithm within deep learning networks imprevite detection performance compared to
CNNs that do not employ any post-processing [11H3], [165].

During object segmentation tasks, a CNN is empldgguerform a pixel-level segmentation. In this
review, the most common segmentation tasks in Ibgittal image analysis were analyzed, which
are nuclei segmentation and tubules/glands segtmamtawo main post-processing strategies have
been proposed for this task: a two-class pipeling three-class pipeline strategy. In two-class
pipelines, a CNN is adopted to perform binary segateon (foreground vs background) and
traditional techniques, such as morphological dpesaand the watershed transform, are employed
to refine the segmentation. More recently, threslpipelines have become commonly used, as
they are able to simultaneously estimate the backgt, the inside, and the border of the object of
interest. It is then possible to use more soplad post processing techniques (e.g., connected
component analysis) to both accurately and efftojesegment touching or high overlapping
objects. Various studies have shown how these grosessing techniques allow to further reduce
the network prediction errors and at the same twc®urately define the borders of the objects of
interest [70], [192], [204].

Over the last few years, there has been an everiggadrend to use increasingly “deep” networks
together with more and more sophisticated pre a®l processing techniques in order to obtain
progressively higher-performing CAD methods [66]1(Q], [128]. Combining more traditional
techniques with deep learning networks has magessible to improve the performance of single
networks, bypassing some of their current limitagiqgrandom misclassification, pixel prediction
errors).

Finally, it is encouraging to see how an “open tatantality is becoming the norm especially in
the field of deep learning, with researchers slgaboth their dataset and codes, stimulating the

development of deep learning frameworks that amgnessively more robust and reliable. In



addition, cloud-based systems are gradually spngawi overcome some of the current limitations
of digital pathology like the huge dimension of WInd the hardware resources needed to train
deep models.

8. Conclusion

Due to its powerful learning ability and advantagedealing with complex patterns, deep learning
methods have been a research hotspot recently. ivbdtine learning methods have either a pre or
a post-processing stage or both that are emplayedake the subsequent classification, detection,
or segmentation problem easier to solve. The iategr of pre and post-processing methods within
deep learning frameworks has attracted much irtteses to date, the combination between these
two techniques has become the standard methodhfige analysis in almost all research fields, in
particular digital pathology.
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Table 1: Summary of the pre-processing strategies employdédep learning frameworks.

Task

Reference

Year Dataset

Method Performance-piecessing impact

Tissue segmentation

Bug et al. [38]

Ertosun et al. [37]

Litjens et al. [4]

Wang et al. [40]

Bandi et al. [34]

Vandenberghe et al. [36]

Arvaniti et al. [39]

Wang et al. [35]

Ambrosini et al. [41]

Salvi et al. [16]

2015 43 WSl

2015 Brain (200 WSI)

2016 Breast (173 WSI); Prostate
(225 WSI)

2016 Breast (400 WSI)

2017 54 WSI from breast, lymph
node, rectum and tongue

2017  Breast (74 WSI)

2018 Prostate (886 images)

2018  Lung (939 WSI)

2020 Prostate (128 WSI)

2020 Liver (385 images)

esholding with morphological filters 95.9% Jaccard index
and median blurring

Hysterdbigsholding on grayscale -
image

Thresholding on the optical density of -
the RGB channels

Global th#ding on HSV color space  Computational time redliby 82% (after
excluding the background)

Semantic segmentation using a deep  92.9% Jaccard index (6.7% increase
network (UNET architecture) compared to simple thresholding)

dittrasholding -

&an filtering and Otsu thresholding -
followed by morphological operators

Otsu thresimaid -

Thadding on the optical density of -
the RGB channels

RGB higss filter followed by Otsu  99.30% accuracy
thresholding and morphological
operators

Artifact detection

Palokangas et al. [32]

Bautista et al. [44]

Kothari et al. [42]

Wu et al. [31]

Gao et al. [43]

2007  Adi1n0 images)

2010 12 images from breast,
esophagus and liver

2013 Kidney (1092 WSI); Ovarian
tissue (563 WSI)

Tissue fold detection using HSIrcolo -
space and k-means clustering

Tissue fold segmentation through 37.02% Jaccard index

adaptive shifting of the RGB values

Tissue fold segmentation using 5% improvement of a cancer-grade
connectivity-based thresholding and prediction model (after excluding tissue
color proprieties folds)

2015 Endomyocardial tissue (1000Classification of sharp and blurry image®98% accuracy

images)

2010 120 images from different
tissues

through local histogram features

Detection of out-of-focus regions using 92.77% accuracy
AdaBoost classifier

Stain normalization

Reinhard et al. [47]

2001  Natimages

Color transfer using LAB color space -



and Principal Component Analysis

Ruifrok et al. [52] 2001 Images from breast andylun Estimation of color appearance matrix -
using prior information of stain vectors
Coltuc et al. [48] 2006  Natural images Image normadion through histogram -
specification
Macenko et al. [51] 2009 12 sample with variougnsta Singular Value Decomposition on OD -
combinations space
Magee et al. [54] 2009 Colon (12 images); Liver (48Probabilistic prior and Bayesian 50% more consistency of RGB colors
slides); Gaussian Mixture Model compared to the original image
Khan et al. [25] 2014  Breast (50 images); Nonlinear mapping of channel statistics 11% improvement in Dice coefficient
Esophagus (12 images); Liver and image reconstruction during breast tumor segmentation
(48 images)
Bejnordi et al. [55] 2015 Liver (30 slides); Lympbde HSD color model followed by structures 23.78% improvement on AUC during
(125 images) segmentation and template matching necrosis quantification
Li et al. [22] 2015 Breast (58 images); Illuminant normalization and spectral -
Lymphoma (375 images) matching
Vahadane et al. [59] 2016 295 images from bladder, Sparse Non-negative Matrix -
colon, prostate, and stomach Factorization (SNMF)
Alsubaie et al. [60] 2017 Breast (3 WSI); Colon (7  Wavelet decomposition and Independent
WSI); Lung (2 WSI) Component Analysis
BenTaieb et al. [64] 2017 Breast (9600 images)p@ol Style transfer and generative learning Accuracy increase in mitosis detection
(165 images); Ovarian tissue using GANs (18.5%), colon glands segmentation
(135 images) (13.5%), and ovarian cancer detection
(16.9%)
Bug et al. [67] 2017  Lung (9 WSI) Feature extrattmd RGB color -
shifting using a deep neural network
Cho et al. [63] 2017  Breast (400 WSI) Stain-stydasfer learning through 2.85% AUC increase for breast cancer
GANs detection
Janowczyk et al. [57] 2017 Breast (25 images); ®ast Sparse AutoEncoders to standardize thel0% improvement in Dice coefficient for a
intestinal tissue (182 WSI) color distribution of the image nuclei segmentation task
Zanjani et al. [62] 2018 Lymph node (625 images) dEmend model based on CNNsto -
learn image-content and color attributes
Anghel et al. [53] 2019 Breast (500 WSI); Lymph  Singular Value Decomposition on OD 5% improvement on the F1-score during
node (400 WSI); Prostate (126space prostate cancer detection
WSI)

Shaban et al. [65] 2019 Breast (400 WSI) Stainedtglnsfer learning through 80% improvement on Aoibreast



GANs cancer classification

Tosta et al. [58] 2019 Breast (58 images); Colon Estimation of sparsity parameters and 9.5% improvement on AUC during colon
(165 images); Lymph node  spectral matching cancer detection
(374 images)
Zheng et al. [70] 2019 Cervical tissue (47 WSI);  Adaptive color deconvolution in OD 7.2% improvement on AUC for breast
Lymph node (1400 WSI); space cancer classification
Lung (39 WSI)
Chadaj et al. [66] 2020 Prostate (717 WSI) CycleNa#ormalization 10% improvement on AUC for prostate
cancer detection
Gupta et al. [61] 2020 Bone (60 images); Breast (58/ulti-stain approach based on color 22.5% improvement on AUC for breast
images) vector space’s geometry cancer detection
Salvi et al. [56] 2020 270 images from adrenal,  Stain color adaptive normalization 11.28% accuracy improvement for breast
breast, colon, liver and through cellular structures detection cancer detection
prostate
Patch selection Cruz-Roa et al. [74] 2017 Brezg9d (WSI) Grid sampling -
Jimenez et al. [76] 2017  Prostate (235 WSI) Eximaocdf a fixed number of patches -
based on Blue Ratio image (BR)
Zheng et al. [80] 2017 Breast (715 WSI) Nucleuddgdipatch extraction using WSI classification for breast cancer
color deconvolution and Gaussian filter detection up to 19x faster
Zhou et al. [14] 2017  Prostate (234 WSI) K-meago@thm to extract relevant  24.26% accuracy improvement for prostate
patches cancer classification
Golatkar et al. [79] 2018 Breast (400 images) Patdhaction based on local nuclear 10% accuracy improvement for breast
density cancer classification compared to grid
sampling
Janowczyk et al. [83] 2018 Breast (141 WSI) A CN¥ekNet) is employed to Computational time reduced by around
identify all the nuclear regions 85% for a nuclei segmentation task
Ryu et al. [75] 2019 Prostate (1833 WSI) Grid sangpl -
Lucas et al. [77] 2019 Prostate (96 WSI) Randorolpaktraction followed by a -
balanced patrtition for each class
Xu et al. [82] 2019 Breast (7909 images) Soft-ditennetwork that select only = Computational time reduced by 85% for
the relevant patches breast cancer classification
Chen et al. [45] 2020 Prostate (32 WSI) Patch efita using HSV color space 26.9% accuracy improvement in prostate
and k-means to detect glandular areas cancer detection
George et al. [81] 2020 Breast (2027 images) Caémonvolution to detect cell nuclei -

and perform patch extraction




Table 2: Summary of the post-processing strategies fasdiaation task.

Task Reference Year Dataset Method Performancst/gPocessing impact
Prostate cancer Kallen et al. [108] 2016  Prosti8 (mages) CNN + majority voting 89.2% accuratyieason grading
Litjens et al. [4] 2016 Prostate (225 WSI) CNN +muuative patch histogramto  99% AUC (median analysis) in cancer
perform cancer detection in WSI detection
Zhou et al. [14] 2017  Prostate (234 WSI) CNN + migjorsoting 70.41% accuracy in intermediate prostat
cancer classification
Arvaniti et al. [39] 2018 Prostate (886 images) CNMNajority voting 57.75% accuracy in Gleason gngdi

Bulten et al. [99] 2019 Prostate (1243 WSI) UNEThresholding on tumoral patches 61.33% accura&léason grading

Campanella et al. [110] 2019 Prostate (24859 WSI) lideSevel aggregation using recurrent 99% AUC in cancer detection

neural network (RNN)

Duong et al. [106] 2019 Prostate (1005 images) Reslith scale embedding 95.3% accuracy in canetxation. 1.9%
accuracy improvement compared to the
single network

Karimi et al. [15] 2019 Prostate (333 images) Mugitile decision aggregation using a 86% accuracy in Gleason grading. 10%

logistic regression model accuracy improvement compared to the
single network

Lucas et al. [77] 2019 Prostate (96 WSI) GoogleNstajority voting 81% accuracy in Gleason grading

Nagpal et al. [107] 2019 Prostate (1557 WSI) Neaneighbor classifier to label the 69% accuracy in Gleason grading

WS starting from the CNN heatmap
Ryu et al. [75] 2019 Prostate (1833 WSI) CNN + migjorsoting 59% accuracy in Gleason grading
Breast cancer Cruz-Roa et al. [117] 2014  Bred2 WSI) CNN + thresholding 84.23% balanced acounacancer
detection

Kovalev et al. [118] 2016 Breast (340 WSI) GoogleN¢hresholding 99% AUC in cancer detection

Litiens et al. [4] 2016  Breast (173 WSI) CNN + cented component analysis 90% AUC in cancer detectio

Wang et al. [40] 2016 Breast (400 WSI) Featureastton from CNN heatmap to 92.5% AUC in cancer detection

perform slide-based classification

Araujo et al. [116] 2017 Breast (269 images) VGGNeabajority voting 77.8% accuracy in cancer grading



Couture et al. [127]

Liu et al. [78]

Vandenberghe et al. [36]
Awan et al. [123]

Gecer et al. [121]
lesmantas et al. [119]

Kohl et al. [115]

Nawaz et al. [120]

Nazeri et al. [128]

Rakhlin et al. [94]

Vang et al. [129]

Vesal et al. [69]

Wang et al. [122]
Ahmad et al. [89]
Matos et al. [92]

Roy et al. [124]

Le et al. [126]

Yan et al. [98]

2017

2017

2017

2018

2018

2018

2018

2018

2018

2018

2018

2018

2018

2019

2019

2019

2020

2020

Breast (571 images)

Breast (270 WSI)

Breast (74 WSI)
Breast (400 images)
Breast (240 WSI)

Breast (400 images)

Breast (400 images)

Breast (400 images)

Breast (400 images)

Breast (400 images)

Breast (400 images)

Breast (400 images)
Breast (400 images)
Breast (260 images)
Breast (7797 images)

Breast (400 images)

Breast (1090 WSI)

Breast (4020 images)

CNBMM classifier

CNN + enseenfrlodel for WSI
classification

CNiNreésholding
ResNgeigjority voting
CNN + mijovoting

CNN + majority voting

VGG frmected component analysis

AlexNetajority voting

82% accuracy in cancer grading

97% AUC in cancer detection

78% accuracy in cancer detection
90% accuracy in cancer detection
91.53 AUC in cancer detection
8386uracy in cancer grading
949% accuracy in camtectibn. 1.5%

accuracy improvement compared to the
baseline

81.25% accuracy in cancer gngdi

CN&hsemble model for image-level 95% accuracy in cancer detection. 5%

classification

CNMaximum probability score

GoogleNegistic regression model

ResNagjority voting
VGGNpetajority voting
ResNagjority voting
GoogteNmajority voting

CNN +arigj voting

CNN + padgregation using
neighborhood information

GoogleNa¢ep network for image-
wise classification

accuracy improvement respect to majority
voting

87.2% accuracy in cameading
87.5% accuracy inrceamrading. 6%

accuracy improvement respect to the
baseline score

89.58% accuracy in cancer grading
93% accuracy in cancer grading
85% accuracy in cancer grading
88.7% accuracy in cancer didac

90% accuracy in cancer grading. 2.5%
accuracy improvement compared to simple
thresholding

73% positive predictive value (PPV) in
cancer detection. 4% improvement in PPV
compared to the baseline

91.3% accuracy in cancer grading.




Lung cancer

Coudray et al. [130] 2018 Lung (1634WS
Graham et al. [135] 2018 Lung (64 WSI)
Wang et al. [35] 2018 Lung (939 WSI)
Li et al. [136] 2019  Lung (200 WSI)
Wei et al. [132] 2019 Lung (422 WSI)

GoogleNet + patch aggregation

ResNet +doan forest classifier

CNN + randaorekt classifier

CNN + conditmirandom fields

ResNet + thiading

97% AUC in camtsection

81% accuracy in cancer giadd&o
accuracy improvement respect to majority
voting.

97.1% accuracy in cancer detec#@m%
accuracy improvement respect to majority
voting.

79.7% accuracy in cancer detecfitfo
accuracy improvement respect to the
single deep network

76.7% agreement in cancer grading respect
to three pathologists

Colon cancer

Sirinukuwattana et al. [139] 2016 @00 images)

CNN + patch aggregation using
neighborhood information

91.7% AUC in colon nuclei classification

Korbar et al. [131] 2017 Colon (2074 images) ResNgtajority voting 91.3% accuracy in cancer detect
Brain cancer Xu et al. [140] 2015 Brain (106 imsige CNN + SVM classifier 97.5% accuracy in canceedgon
Hou et al. [73] 2016 Brain (1000 images) CNN + &iigi regression model 77.1% accuracy in cancetigga3.5%

and 6.5% accuracy improvement respect to
majority voting and SVM, respectively




Table 3: Summary of the post-processing strategies faratiein task.

Task Reference Year Dataset Method Performancst/gPocessing impact
Lymphocyte detection Chen et al. [156] 2014  Breast (42 images) CNN +maxima suppression 94.3% accuracy
algorithm
Janowczyk et al. [1] 2016 Breast (100 images) CNi¢rative cleaning 96% True Positive Rate (TPR) 87%

Positive Predicted Value (PPV). 6% TPR
incrementation and 23% PPV increase
respect to single network

Garcia et al. [157] 2017  Gastro-intestinal tisste (  CNN + non-maxima suppression 96.8% accuracy
images) algorithm
Bidart et al. [153] 2018 Breast (92 WSI) CNN + nmaxima suppression 94.6% accuracy’% accuracy
algorithm improvement respect to SVM classifier
Li et al. [154] 2018 Liver (5040 images) CNN + mbagtogical operators 93.7% accuracy
Swiderska-Chadaj et al. [158] 2018 58 WSI from bteeolon ~ YOLO + non-maxima suppression 78% F1-score
and prostate algorithm
Rijthoven et al. [13] 2018 58 WSI from breast, eolo  YOLLO network + non-maxima 74.7% F1-score. 3% F1-score
and prostate suppression algorithm incrementation with a speed-up of 4.3X
respect to YOLO network
Saltz et al. [151] 2018 5202 images from breast, CNN + thresholding 95.4% AUC

colon, lung, prostate, skin
and ovarian tissue

Swiderska-Chadaj et al. [147] 2019 Breast (33 WSHlpn (28 YOLLO + non-maxima suppression 79% F1-score. 8% F1-score increase

WSI); Prostate (22 WSI) algorithm compared to the baseline
Mitosis detection Wang et al. [170] 2014 Breastifidges) Cascade ensemble handcrafted + CNN#3.5% F1-score. 4.81% F1-score
derived features improvement compared to single network
Albargouni et al. [163] 2016 Breast (23 WSI) Muttide decision aggregation using 74.2% F1-score. 22% F1-score
three different CNNs improvement compared to the single-scale
CNN
Albayrak et al. [166] 2016  Breast (10 WSI) CNN -lblanalysis 96.8% accuracy
Chen et al. [162] 2016 Breast (50 images) CNN -allocaximum analysis 79% F1-score. 13.1% F1l-scane@se
compared to the baseline
Chen et al. [169] 2016 Breast (50 images) CNN -bsddeep network for mitosis 78.8% F1-score
detection

Janowczyk et al. [1] 2016 Breast (311 images) CNNresholding 54% F1-score



Zerhouni et al. [160]

Akram et al. [165]

Lietal [172]

Rao et al. [171]

Saha et al. [164]

Beevi et al. [168]

Lietal [173]

Wahab et al. [167]

Mahmood et al. [174]

2017

2018

2018

2018

2018

2019

2019

2019

2020

Breast (107 images)

Breast (656 images)

Breast (1746 images)
Breast (4638 images)
Breast (2762 images)

Breast (92 images)

Breast (1634 images)

Breast (500 WSI)

Breast (1746 images)

CNiMajority voting

CNNoR-maxima suppression
algorithm

FASTEBNN + non-maxima
suppression algorithm

FASTERNR + non-maxima
suppression algorithm

CNidndbrafted features

CNNctiva contour model

CNN + ptariogical filtering

CNN -sfolding

HABS-RCNN + textural features

64.8% F1-score

64.2% F1-score. 16% F1-score increase
compared to the baseline

76.8% F1-score

95.5% F1-score

90% F1-score. 14% F1-scoreowapnent
respect to the single CNN

88.6% F1-score
80.21% F1-score. 9.27% F1-scor
improvement compared to the baseline
71.3% F1-score.

73.1% F1-score. 7%sé€dre
improvement compared to the baseline




Table 4: Summary of the post-processing strategies fomsegation task.

Task Reference Year Dataset Method Performancst/gPocessing impact
Nuclei segmentation Song et al. [186] 2015 Brealtifhages) CNN + graph partitioning model 95% Ddcere
Pan et al. [183] 2017 Breast (58 images) CNN + molqmyical operators 83.9% F1-score
Xing et al. [187] 2015 Brain (31 images); Breadi (3 CNN + deformable model 81% F1-score
images); Pancreas (22 images)
Chen et al. [188] 2017 Brain (33 images) CNN + rhotpgical operators 87.6% Dice score
Kumar et al. [180] 2017 30 images from bladder, three-class CNN + region growing 76.2% Dice sc6rg@9% Dice score
breast, colon, kidney, liver, increase compared to traditional two-class
stomach and prostate CNN
Naylor et al. [185] 2018 Breast (55 images); 25gesm UNET + distance transform 82.3% Dice score

from bladder, colon, kidney,
liver, stomach and prostate

Cui et al. [190] 2019 Breast (77 images); 25 imagdhbree-class CNN + connected componerg1% Dice score. 5% Dice score increase
from bladder, colon, kidney, analysis compared to the baseline
liver, stomach and prostate

Sornapudi et al. [184] 2018  Cervical tissue (138ges) CNN + superpixel approach 98.2% Dice score

Xie et al. [71] 2018 Brain (15 WSI); 30 images MASK R-CNN + watershed transform 90.4% Dice sc@r86% Dice score
from bladder, breast, colon, increase compared to the baseline
kidney, liver, stomach and
prostate

Jung et al. [72] 2019 Breast (38 images); 25 imag®4ASK R-CNN + multiple inference 81.2% Dice scor&% Dice score
from bladder, colon, kidney, improvement respect to the baseline
liver, stomach and prostate

Koyun et al. [182] 2019 670 images from breast, CNN + thresholding 81% F1-score. 10% F1-score aesme
colon, kidney and prostate respect to the single network

Mandloi et al. [181] 2019 670 images from breast, CNN + thresholding 86% F1-score
colon, kidney and prostate

Zeng et al. [191] 2019 30 images from bladder, three-class UNET + thresholding 82.7% F1-score FA%core increase
breast, colon, kidney, liver, respect to the standard UNET model

stomach and prostate

Wan et al. [189] 2020 243 images from breast and CNN + concave point detection 80.75% Dice score. 8.7% Dice score
lung algorithm improvement respect to the baseline



Xie et al. [192] 2020 95 images from bladder, three-class CNN + watershed transform 88.6% Flesdat% F1-score increase
breast, colon, kidney, liver, respect to the baseline
stomach and prostate
Tubule/Glands Bentaieb et al. [198] 2016 Colon (165 images) CNitdresholding 80% Dice score
segmentation
Chen et al. [193] 2016 Colon (80 images) Two CNNmsorphological operators 81.3% Dice score
Ren et al. [201] 2017  Prostate (22 images) CNNrddas mirroring 84.6% F1-score. 1% precision
improvement compared to the single
network
Xu et al. [196] 2017 Colon (165 images) Ensemblthode CNNs 86.8% Dice score
De Bel et al. [199] 2018 Kidney (24 WSI) UNET + cmrcted component analysis 73.6% Dice score
Graham et al. [203] 2018 Colon (378 images) Twd\EN thresholding 87% F1-score
Tang et al. [197] 2018 Colon (165 images) CNN <sholding 87.2% Dice score
Van Eycke et al. [195] 2018 Colon (165 images) CNBbnnected component analysis 84.1% Dice score
Binder et al. [204] 2019 Breast (25 images); Colon CNN + morphological operators 84.5% Dice score.[3%e score
(165 images) improvement compared to the baseline
Qu et al. [202] 2019 Colon (165 images) Three-c@N$ + connected 92.4% F1-score
component analysis
Rezaei et al. [200] 2019 Colon (165 images) CNNo¥phological operators 84.4% Dice score
Ding et al. [205] 2020 Colon (165 images) Threessl&NN + morphological 88.2% F1-score

operators
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