
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Petri Nets as Semantic Domain
for Diagram Notations

Luciano Baresi 1

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Milano, Italy

Mauro Pezzè 2

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano Bicocca

Milano, Italy

Abstract

This paper summarizes the work carried out by the authors during the last years.
It proposes an approach for defining extensible and flexible formal interpreters for
diagram notations based on high-level timed Petri nets.

The approach defines interpreters by means of two sets of rules. The first set
specifies the correspondences between the elements of the diagram notation and
those of the semantic domain (Petri nets); the second set transforms events and
states of the semantic domain into visual annotations on the elements of the diagram
notation. The feasibility of the approach is demonstrated through MetaEnv, a
prototype tool that allows users to implement special-purpose interpreters.

Key words: Graph transformation systems, Petri nets, Formal
denotational semantics, MetaEnv

1 Introduction

This paper summarizes the work carried out by the authors during the last
years. The work started with the goal of finding a suitable solution to the
problem of adding precision and rigor to the many informal diagram notations
used by software engineers. We wanted to improve current practice; we did
not want to change it and force designers adopt new formal methodologies.

1 Email: baresi@elet.polimi.it
2 Email: pezze@disco.unimib.it

c©2005 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

L. Baresi and M. Pezzè

In fact, many attempts already proved that formal methodologies per se only
pay off in very specific domains where special purpose requirements and needs
justify their use.

Our goal was the definition of suitable dynamic semantics for common no-
tations without forcing the designer to learn new notational elements. The
flexibility of used notations, like Structured Analysis —when we started the
work— and UML nowadays, does not allow the definition of a single formal se-
mantics. This is why we opted for a rule-based approach that allows experts to
associate the chosen notation with as many dynamic semantics as needed. We
adopted a denotational style to specify the semantics as a suitable translation
into high-level Petri nets. The use of Petri nets came from the background of
the authors and the availability of a suitable validation framework.

This approach posed two problems: (1) the definition of a means to specify
the translations of designed models into functionally equivalent Petri nets and
(2) the translation of execution and analysis results of obtained nets into
representations suitable for the user. Petri nets remain hidden, the user does
not “touch” them, but they supply the execution/validation engine and their
outcome (e.g., the token game or deadlock situations) is rendered in such a
way that the user understands them.

We addressed the first problem by means of a pair of graph transformation
systems. The first graph transformation system specifies all feasible steps for
constructing user models. These transformation rules predicate on the meta-
model of such models, that is, they consider their abstract syntax representa-
tions. The second transformation system, whose rules are paired with those
of the first system, specifies equivalent transformations on the corresponding
Petri net. In other words, while generating the abstract representation (meta
model) of a user model, we also create the corresponding Petri net.

We also defined a consistency framework to allow experts define a consis-
tent set of semantics for the same notation by framing rules and fostering their
reuse. The consistency framework helps the user assess the completeness and
consistency of the proposed semantics.

We addressed the second problem (i.e., the backward translation of execu-
tion and analysis results) by defining textual grammars that transform tran-
sition firings and place mappings into suitable annotations of the elements of
the meta model. These annotations are then rendered into actual animations,
graphical effects, and textual annotations according to the used tool.

The integration with standard CASE technology and tools introduces the
last aspect touched by this paper. The two-way translation approach is im-
plemented in a tool called MetaEnv [4]. It supplies the core support to graph
transformation systems and was conceived to be easily integrated with well-
known CASE tools. We did experiments with StP (Software through Pic-
tures), but also with IBM Rational Rose and with special-purpose prototypes
developed for this purpose. MetaEnv and all studied CASE tools allowed
us to do experiments with very different notations: for example, Structured

2

L. Baresi and M. Pezzè

Analysis [1], our first case study, LEMMA [2], a special-purpose notation for
medial diagnostic processes, and a subset of UML [3]. All these experiments
gave encouraging results and demonstrated the feasibility of the approach.

The rest of the paper is organized as follows. Section 2 surveys related
approaches. Section 3 presents the approach and its characterizing features.
Section 4 describes MetaEnv, the prototype toolset developed to support the
approach. Section 5 summarizes the main experiments conducted with the
approach and Section 6 concludes the paper.

2 Related work

The blending of diagram notations and formal methods has been addressed by
several proposals in the last decades. Initially, the approaches concentrated on
Structured Analysis (SA). For example, Semmens and Allen [19] complement
De Marco-like SA with Z, while Wing and Zaremski [20] use Larch. De Marco-
like SA is supplemented also with object-oriented methodologies and VDM by
Liu et al. in [15].

A wider approach is taken by Paige [16,17]. His approach, called meta-
method, integrates specification notations by using a heterogeneous basis, which
contains a set of formal and informal notations along with all relationships
among them. The meta-model is given by defining fixed correspondences
among formal models and by providing particular interpretations of informal
notations.

More recently, many proposals concentrated on UML. In some cases, like
the pUML approach ([8]) for example, the goal is the static semantics of UML
and dynamic aspects are often neglected. Other approaches, in contrast, con-
centrate on the dynamic semantics, but they all address only state diagrams
and not the whole language. For example, Engels et al. [6] use CSP (Commu-
nicating Sequential Processes [13]) to formally define the dynamic semantics.
Engels et al. [7] also propose a completely different approach where UML inter-
action diagrams are transformed directly into Java code and the formalization
is given implicitly.

3 The MetaEnv approach

The approach presented in this paper defines the dynamic semantics of a no-
tation by means of a mapping from the abstract syntax to a semantic domain.
The mapping is based on two sets of rules:

• Building rules map diagram models onto high-level timed Petri nets (HLTPN, [9]).
The semantics can be adapted, modified, and extended by modifying, delet-
ing or adding these rules. The rules are given as pairs of graph transforma-
tion productions.

• Visualization rules map semantic actions, i.e., HLTPN firings and mark-

3

L. Baresi and M. Pezzè

ings, back to the diagram model, thus allowing animation and visualization
of analysis results.

3.1 Building rules

Building rules are pairs of attributed programmable graph grammar produc-
tions [10]. The Abstract Syntax Graph Grammar (ASGG) productions identify
the transformations on abstract syntax models. The corresponding Semantic
Graph Grammar (SGG) productions define the semantics by suitably trans-
forming the corresponding Petri nets. Special purpose attributes, associated
with semantic elements, specify the correspondences between semantic and
syntactic elements.

In this paper, we use the term meta-model to indicate the abstract syntax
of a notation, and the term abstract syntax model to refer to an instance
of the meta-model. We also use UML object diagrams to render abstract
syntax models, and standard Petri net symbols, augmented with diamonds
for markers, to draw HLTPNs.

Each element of the meta-model is paired with an equivalent HLTPN that
defines the associated semantics. Their transformations are stated by means
of suitable graph grammar productions. In this context, nodes of ASGG pro-
ductions correspond to the elements that define abstract syntax models, while
nodes of SGG productions correspond to HLTPN places, transitions, arcs, and
markers (i.e., placeholders that relate elements). Edges represent relationships
between elements and instantiate the associations in the meta-model. Edges
in ASGG productions correspond to links between notation elements, while
edges of SGG productions link arcs with places and transitions. They also
connect HLTPN elements with the markers to which they are related.

In this paper, we use LEMMA as example notation [2]. LEMMA is a sim-
ple language to allow doctors to precisely specify their diagnostic processes.
Figure 1 shows its meta-model. Nodes correspond to actions done on pa-
tients and edges define the precedences among them. LEMMA models are
designed with the following elements: entry points are starting points, clinical
tests model medical investigations, sets of clinical tests model the execution
of sets of investigations where the actual order among the tests is not im-
portant, symptoms selectors are split points to help decide the actual path,
iterators make patients repeat enclosed actions n times, and exit points define
the conditions for exiting the process.

The meta-model acts as type graph for the ASGG productions of the build-
ing rules. The meta-model and building rules only define necessary constraints
on LEMMA models, but they are not sufficient to identify the class of correct
LEMMA models. It is the user interface that imposes further constraints and
thus allow the designer to specify only correct models.

Figure 2 shows an example building rule. The two productions are repre-
sented as graphs. Each production is composed of three parts that correspond

4

L. Baresi and M. Pezzè

Element
LEMMA
Model

ConnectorIn Port

Out Port

1

1

1 1

1

1 .. n

1

1

0 .. n

0 .. n

Point
Exit Entry

Point

Iterator
Selector
Sympton

Set of
Clinical Test

Clinical
Test2 .. n

1

LEMMA

Fig. 1. LEMMA meta-model

to the three graphical regions identified by a Y, as proposed in [11]. The left-
hand side graph indicates the sub-graph to be substituted by applying the
production. The right hand-side graph indicates the graph to be added. The
edges between left- and right-hand side graphs, through the top graph, indi-
cate the connectivity of the added sub-graph with respect to the host graph
(i.e., the graph on which the production is applied). Each node is associated
with a unique identifier; nodes with the same identifier in both the left- and
right-hand side of the production are preserved while applying the production.

Figure 2 presents the building rule that specializes a LEMMA Element in
a Clinical Test. The ASGG production (Figure 2(a)) applies to a node of type
LEMMA Element, which belongs to the left-hand side graph, and preserves
it, since the node with the same identifier (1) belongs to both the left- and
right-hand side graphs. The production adds a node of type Clinical Test and
an edge of type b to connect the newly added node to the LEMMA Element.
The textual annotations of the rule indicate that the name of the new element
(node 2) is the same as the name of the LEMMA Element 1 plus suffix CT

and its type is Clinical Test.

The pair of productions of Figure 2(b) identifies the changes on the HLTPN
that correspond to the modifications on the abstract syntax model. The actual
correspondences between ASGG and SGG elements are established by means
of the textual attribute absNode. The programmed production comprises
a main production (the top of Figure 2(b)) and one sub-production. The
production adds a CT place to model the status of the clinical test. It also
connects the In place to this place by means of a Start Test transition and two
arcs, depicted using an arrow in a circle. Notice that HLTPN arcs are modeled
as nodes; edges model the usual input/output relationships between arcs and
places/transitions. The top of the production indicates the embedding, i.e.,
the context that must be considered when applying the rule. The b edge from
the top Out place to element 1 selects all the Out places that belong to the

5

L. Baresi and M. Pezzè

1
: LEMMA Ele. : LEMMA Ele.

: Clinical Test

2

1
b

StartTest

Out

1 1
E E

a

t

a

p

In

CT

b

b

b

b

b

2

3

4

5

6

ca

2

In

2.name = 1.name + "CT";
2.type = "Clinical Test";

3.name = @1.name@ + "P";
3.type = "CT";
3.absNode = @2.name@;
4.name = @1.name@ + "T";
4.type = "StartTest";
4.predicate = "TRUE";
4.action = ;
4.tMin = "enab";
4.tMax = "enab";
4.absNode = @2.name@;

ResProd

1

2

ca

CT

Out

CT
1

a

4
t

3

5

2

a

p

Out

3.name = 2.name + "T";
3.type = "ResProd";
3.predicate = "compare(1.value,

2.absNode.value)";
3.action = ;
3.tMin = "enab";
3.tMax = "enab";
3.absNode = @2.name@;

(a) ASGG production (b) SGG production

Fig. 2. Building rule AddClinicalTest

E marker, that is, the LEMMA Element. Notice that the number of nodes
identified by the embedding can vary, while the number of nodes selected by
the left-hand side of a production is fixed 3 . The dotted edge that connects

3 Since a clinical test has exactly one input, but two or three outputs, we can use the

6

L. Baresi and M. Pezzè

the Out place with the CT place (node 3) indicates a new special-purpose
edge of type ca (connect arc), which is added between each place of type Out
selected by the embedding and the new CT place.

Dotted edges indicate sp-edges that trigger sub-productions. A production
with sp-edges is a programmed production, whose application requires that
the main production and all instantiations of the sub-productions be applied.
Since sp-edges connect nodes in the embedding, whose instantiation happens
only dynamically, the number of times the sub-productions must be applied
varies consequently.

The sub-production shown on the bottom of Figure 2(b) indicates the
substitution of a ca sp-edge, which connects the CT place to an Out place,
with a transition of type ResProd (node 3) 4 and two HLTPN arcs (nodes 4

and 5). The resolution of the instances of the sp-edges of Figure 2(b) adds as
many transitions and pairs of arcs as the number of Out places that belong
to the E marker.

The textual annotations of the main SGG production set the properties of
the newly created CT place and Start Test transition. We use pairs of @ to
make the textual annotations of SGG productions refer to the values of the
attributes of ASGG elements. The name of place 3 is the same as the name
of the ASGG node 1 plus P and its type is CT. The name of transition 4 is the
same as the name of the ASGG element augmented with suffix T. Its predicate
is true, that is, the transition is enabled as soon as there is at least a token
in each place of its pre-set. The empty action simply moves the token from
the place of the pre-set to that of the post-set. The enabling interval is tMin
= enab and tMax = enab to indicate that the transition must fire as soon as
enabled. The textual annotations of the sub-production define the attributes
of the added transition(s): The name is the name of the output port (i.e.,
the Out place) augmented with suffix T. The type is ResProd, the predicate

calls the external function compare that enables/disables the transition by
comparing the token in place 1 (1.value) and the value associated with the
output port, that is, the value associated with the absNode of node 2. The
enabling interval indicates that the transition must fire as soon as enabled.

For all these SGG elements, attribute absnode indicates the abstract syn-
tax element that corresponds to the semantic node.

Figure 3 shows a simple LEMMA model and its corresponding Petri net.
Space limitations do not allow us to describe the step by step construction of
the model. Given the LEMMA representation, we start applying the Axiom
to create a new LEMMA Model, then we need rule AddLEMMAElement four
times to create the four elements that belong to the model. These elements
are then converted into an entry point, a clinical test and two exit points by

left-hand side graph to reason about the In place, but we need the embedding to deal with
Out places.
4 Transitions are typed to indicate the class of modeled events. In this case ResProd means
Result Production.

7

L. Baresi and M. Pezzè

Entry point

Clinical
Test

+ -

Exit point 2Exit point 1

EnP

Enter

C

StartTest

ResProd ResProd

CT

C

testNegativetestPositive

C

(a) LEMMA Model (b) Petri net

Fig. 3. Example LEMMA model and its corresponding Petri net

means of dedicated rules: the rule of Figure 2 is the one that transforms the
LEMMA Element into the Clinical Test.

3.2 Visualization rules

Visualization rules translate obtained results in terms of suitable visualiza-
tions on the abstract syntax elements. The rules define the policy to prop-
agate the events generated by analysis and simulation back to the abstract
level. HLTPN events are firings of transitions and markings of places; once
translated, they become abstract animations. The mapping from abstract to
concrete is straightforward and deals with substituting an abstract animation
with a concrete action, which depends on the used CASE tool.

Since propagation of events depends on both the diagram notation and
user needs, visualization rules are externally provided in the form of C-like
code and are interpreted to produce abstract animations. Each rule produces
a visualization that usually comprises some animations, that is, the visual-
ization actions associated with the elements of the abstract syntax model. The
triggering event is the firing of a transition; the visualization defines how to
animate the element associated with the transition itself and those related to
the places of its pre- and post-sets. The predefined function getAbsId() re-
turns the abstract component associated with the Petri net element. Figure 4
presents rule complete clinical test. It describes how the firing of transitions
of type ResProd is visualized in terms of LEMMA elements. Since these tran-
sitions identify the completion of clinical tests, the places in their post-sets
correspond to the flows that leave the Clinical Test. The rule associates anima-
tion prodOutput to all selected Connector (in this case, we always select one
place and thus one connector) and animation completeTest to the Clinical
test.

The application of the visualization rule of Figure 4 to the example model
of Figure 3 is exemplified in Figure 5. The firing of the ResProd transition

8

L. Baresi and M. Pezzè

Visualization v = new Visualization();

if (tr.type() == "ResProd") {
foreach pl in tr.postSet() {

Animation an = new Animation();
an.setEntityId(pl.getAbsId());
an.setAnimType("prodOutput");
v.addAnimation(an);

}

Animation an = new Animation();
an.setEntityId(tr.getAbsId());
an.setAnimType("completeTest");
v.addAnimation(an);

}

Fig. 4. The visualization rule complete clinical test

Entry point

Clinical
Test

+ -

Exit point 2Exit point 1

EnP

Enter

C

StartTest

ResProd ResProd

CT

C

testNegativetestPositive

C

Entry point

Clinical
Test

+ -

Exit point 2Exit point 1

EnP

Enter

C

StartTest

ResProd ResProd

CT

C

testNegativetestPositive

C

Fig. 5. How visualization rules work

makes the patient move from the Clinical Test to the outgoing flow. This
is because the rule states that we must animate both the element associated
with the fired transition and its outgoing flows.

9

L. Baresi and M. Pezzè

3.3 Consistency framework

Given the meta-model of a diagram notation, a formal dynamic semantics (i.e.,
an interpretation) is defined by specifying a building rule for each element
of the meta-model. The definition of a consistency framework help define
consistent interpretations.

For example, Figure 6 shows a consistency framework for LEMMA, that
is, a partial order among the elements of the meta-model. This organization
forces all notation elements to use the interfaces supplied by In and Out Port.
This means that all changes in Symptom Selector, for example, can only be
local, while changes to LEMMA Element could impact both In Port and Out
Port and all other notation elements.

LEMMA
Model

LEMMA
Element

In Port Out Port

Iterator
Point
Exit Entry

PointSelector
SymptonSet of

Clinical Test

Clinical
Test

Connector

Fig. 6. A consistency framework for LEMMA

The consistency framework imposes a dependency among shared interfaces.
The rule that is higher in the hierarchy is in charge of defining (supplying)
the interface, while the lower-level rule can only use it. This way, we clearly
constrain the changes in building rules and foster consistency of defined inter-
pretations.

The consistency framework allows us to assess the correctness of a given
set of rules by inspecting informally obtained behaviors on well-known bench-
marks. This is because in many cases the starting point is the informal in-
terpretation ascribed with the considered notation. The completeness can be
verified by proving that the mapping onto the semantic domain covers all the
elements of the meta model. Incomplete sets of rules might reflect incom-
plete informal interpretations. The possibility of proving the completeness of
the formalization also allows us to identify lacks in the informal interpreta-
tions. Some partiality can be by-passed by providing default transformations
to complement the original specification. The consistency can be verified by
checking the functional behavior (termination and confluence) of the designed
graph transformation system ([12]).

10

L. Baresi and M. Pezzè

4 Tool support

The approach proposed in this paper is supported by MetaEnv, our proto-
type interpreter generator. Building and visualization rules are the basis for
tailoring MetaEnv for a particular diagram notation and a given interpreta-
tion. The consistency framework is the basis for efficiently managing complex
notation families.

notation
library

(sets of
formalization

rules)

building/
animation

rules

concrete/abstract interface

user
model

concrete
visualization

builder
(GG intepreter)

building
rule

building
sequence

abstract
model

semantic model
(HLTPN)

animator debugger

abstract
animation

abstract
animation

code generator

C code

visualization
rule

visualization
rule

rule
editor

CASE
tool

HLTPN
engine

(executor
analyzer)

concrete
execution/debugging

parameter

abstract
execution
parameter

abstract
debugging
parameter

abstract/semantic interface

SEMANTIC INTERPRETER
GENERATOR

Fig. 7. Architecture of MetaEnv

Figure 7 shows the architecture of MetaEnv. The concrete/abstract inter-
face plugs MetaEnv in an external CASE tool. The interface defines a two-way
communication channel to transform user models into suitable sequences of
building rules and abstract animations into concrete visualizations for the em-
ployed CASE tool. The CASE Tool must supply an API that can be used to
properly store, retrieve, and animate models.

The concrete/abstract interface can use different policies to transform mod-
els in sequences of invocations of building rules. The simplest solution is an on-
line translation that maps user actions into invocations of rules. Alternatively,
the interface can adopt an off-line approach that reads complete models and
defines the sequence according to the predefined partial order among build-

11

L. Baresi and M. Pezzè

ing rules identified by the consistency framework. Rules that delete elements
are necessary only to allow for incremental transformations, while would be
useless if we think that we always scan models from scratch.

The data flow in the opposite direction transforms abstract animations
produced by animation rules into concrete visualizations. Abstract animations
describe visualizations of notation elements in a tool-independent way. The
interface adds all details that depend on the particular tool. Differently from
all the other components of MetaEnv, the concrete/abstract interface varies
according to the employed CASE tool.

The builder is a graph grammar interpreter that applies building rules, ac-
cording to the sequence supplied by the concrete interface, and builds both the
abstract syntax model and the semantic model, i.e., the HLTPN. The anima-
tor and debugger apply visualization rules to firings and markings produced
by the HLTPN engine. For example, the animator transforms the execution of
the HLTPN, that is, a sequence of firings, into a sequence of abstract anima-
tions. The debugger allows users to control the execution of their models by
setting break-points and watch-points, choosing step-by-step execution, and
tracing the simulation. The debugger transforms debugging parameters in
terms of constraints on the sequence of abstract animations. A step-by-step
execution is an execution that stops after each abstract animation; a break
point on a particular element of the model suspends the execution at the first
abstract animation that involves the selected element.

The builder, animator, and debugger read their rules from the notation li-
brary that stores all rules. The rule editor lets users define new rules through a
graphical editor and processes them to move from the graphical representation
to the required textual format.

The code generator automatically produces ANSI C code from diagram
models, using both the semantic and abstract models. The semantic model
provides the details to generate the C code; the abstract model provides the
structure to split the code in meaningful modules. The automatic derivation
is based on special-purpose hard-coded rules that parse the HLTPN to find
particular patterns that are associated with the main constructs of the C
language.

The abstract/semantic interface plugs in a HLTPN engine that executes
and analyzes the HLTPNs obtained through the builder. The abstract/semantic
interface adapts the interface of MetaEnv to the chosen HLTPN engine. All
experiments conducted so far used Cabernet [18] as HLTPN engine, but other
engines could be plugged as well.

MetaEnv requires two different classes of users. Domain experts are profi-
cient in the diagram notation and interact with the tool-set through the CASE
tool to design their models. They do not define new rules (interpretations),
but do their experiments with existing sets or define the requirements for
new ones. MetaEnv experts transform these requirements into consistent and
complete sets of rules. These users interact with the tool-set through the rule

12

L. Baresi and M. Pezzè

editor and must be proficient in HLTPNs, building rules, and visualization
rules to be able to ascribe meaningful semantics.

5 Experiments

The approach has been validated by plugging MetaEnv in different commer-
cial and special-purpose CASE tools for experiments with various diagram
notations:

• Structured Analysis ([5]) has been chosen as one of the richest notation
families. The formalization of Structured Analysis comprises about 50 sets
of rules. Each set of rules comprises from one to five rules that provide
different interpretations of the same construct. A specific interpretation
can be obtained by selecting one rule from each of the 50 sets. Some in-
terpretations do not require a rule from each set. For example, about one
third of the rules concerns the control model, which belongs to the real-time
extensions of Structured Analysis (SA-RT), thus such rules are not used for
formalizing “classical” Structured Analysis dialects. The consistency frame-
work indicates coherent subsets of rules. For example, all rules that deal
with control aspects are rooted in a single sub-hierarchy and can thus be
ignored without affecting the other rules.

• Control Nets have been defined for designing embedded control systems.
Control Nets enrich Petri nets with graphical elements that identify sub-
nets to be reused in further developments. The notation is open, i.e., new
elements can be added to the set of reusable components by defining their
syntax, their external ports and the corresponding HLTPNs. The core ele-
ments of Control Nets were formalized with 30 rules.

• IEC Function Block Diagram (FBD) is one of the graphical languages
proposed by the IEC standard 61131-3 [14] for designing programmable con-
trollers. FBD was chosen because it presents new challenges. In particular
FBD is used at a lower abstraction level than Structured Analysis, and the
IEC standard is mostly limited to the syntax, while the semantics of compo-
nents is highly programmable to adapt the notation to different platforms
and applications. Another interesting option of FBD is the possibility of
extending the notation by adding new elements (blocks).

We formalized the core FBD notation and the main libraries with about
40 rules. We used a customized version of the rule editor for adding new
libraries and modifying existing ones. The customized version of the rule
editor allows users to define new building rules by simply indicating the
interfaces of the new block and giving a HLTPN that models the semantics.

• LEMMA, a Language for Easy Medical Model Analyses, was developed
jointly with the 4th Institute of General Surgery in Rome (Italy). Diag-
nosis processes are usually described informally, thus they are often misin-
terpreted and cannot be fruitfully analyzed. Formal notations represent a

13

L. Baresi and M. Pezzè

barrier for doctors who are not able to take advantage from formal analysis.
LEMMA conjugates the high expressiveness of diagram notations with the
rigor of formal methods necessary to simulate and analyze defined models.

• UML was chosen because the semantics, derived from the object-oriented
nature of the notation, includes aspects that radically differ from the hi-
erarchical approach of both SA and FBD. Moreover, the different diagram
notations provided within UML allow alternative descriptions of the same
elements, thus raising consistency and completeness issues. This led us to
consider the UML meta-model as integration means, choice that signifi-
cantly impacted the representation of abstract syntax models.

The work aimed at analyzing mainly the dynamic behavior of UML mod-
els. HLTPNs were used to animate and validate the dynamics of object
interactions (mainly class, interaction, and state diagrams). Static aspects
(e.g., the consistency among classes) were not covered by these experiments.

In this case, MetaEnv was plugged in Rational Rose. The 20 rules we
defined refer to class, state and interaction diagrams only, and represent a
subset of all rules needed to formalize UML.

6 Concluding remarks

This paper proposes an approach and a supporting toolset for defining formal
interpreters for diagram notations. The paper also demonstrates the suitabil-
ity of HLTPNs as semantic domain to ascribe diagrammatic notations with
formal semantics. The approach is based on building rules, to create HLTPNs
that are equivalent to user models, and visualization rules, to map analysis
and execution results of HLPTNs onto user models.

The approach has been validated by means MetaEnv, a prototype toolset
that supplies a general-purpose interpreter for building and visualization rules.
MetaEnv was properly customized for special-purpose and well-known no-
tations and produced interpreters were employed to design several example
models, from simple exercises to models of real industrial applications.

References

[1] L. Baresi. Formal Customization of Graphical Notations. PhD thesis,
Dipartimento di Elettronica e Informazione – Politecnico di Milano, 1997. In
Italian.

[2] L. Baresi, F. Consorti, M. Di Paola, A. Gargiulo, and M. Pezzè. LEMMA: A
Language for an Easy Medical Models Analysis. Journal of Medical Systems –
Plenum Publishing Co., 21(6):369–388, December 1997.

[3] L. Baresi and M. Pezzè. On Formalizing UML with High-Level Petri Nets.
In Concurrent Object-Oriented Programming and Petri Nets, pages 276–304.
Springer-Verlag, 2001.

14

L. Baresi and M. Pezzè

[4] L. Baresi and M. Pezzè. A Toolbox for Automating Visual Software
Engineering. In Proceedings of FASE’02, volume 2306 of Lecture Notes in
Computer Science, pages 189–198, 2002.

[5] T. De Marco. Structured Analysis and System Specification. Prentice-Hall,
1978.

[6] G. Engels, R. Heckel, and J.M. Küster. Rule-based Specification of Behavioral
Consistency based on the UML Meta Model. In Proceedings of UML 2001,
volume 2185 of Lecture Notes in Computer Science, pages 272–287. Springer-
Verlag, 2001.

[7] G. Engels, R. Hücking, S. Sauer, and A. Wagner. UML Collaboration Diagrams
and their Transformation to Java. In Proceedings of UML’99, volume 1723 of
Lecture Notes in Computer Science, pages 473–488. Springer-Verlag, 1999.

[8] A. Evans and S. Kent. Core Meta-Modelling Semantics of UML: The pUML
Approach. In Proceedings of UML’99, volume 1723 of Lecture Notes in
Computer Science, pages 140–155. Springer-Verlag, 1999.

[9] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè. A Unified High-Level
Petri Net Model For Time-Critical Systems. IEEE Transactions on Software
Engineering, 17(2):160–172, February 1991.

[10] H. Göttler. Attribute Graph Grammars for Graphics. In Graph Grammars
and Their Application to Computer Science, volume 153 of Lecture Notes in
Computer Science, pages 130–142. Springer-Verlag, 1983.

[11] H. Göttler. Diagram Editors = Graphs + Attributes + Graph Grammars.
International Journal Man-Machine Studies, 4(37):481–502, 1992.

[12] R. Heckel, J Küster, and G. Taentzer. Confluence of Typed Attributed Graph
Transformation Systems. In Proceedings of Graph Transformation, 1st Int.
Conference, ICGT 2002, volume 2505 of Lecture Notes in Computer Science,
pages 161–176. Springer-Verlag, 2002.

[13] C. Hoare. Communicating Sequential Processes. Communicat. Associat.
Comput. Mach., 21(8):666–677, 1978.

[14] R.W. Lewis. Programming Industrial Control Systems Using IEC 1131-3. IEE
Publishing, 1998.

[15] S. Liu, A.J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: A Formal
Engineering Methodology for Industrial Applications. IEEE Transactions on
Software Engineering, 24(1):24–45, January 1998.

[16] R.F. Paige. Case Studies in Using a Meta-Method for Formal Method
Integration. In Proceedings of the Internation Conference on Algebraic
Methodology and Software Technology, volume 1349 of Lecture Notes in
Computer Science, pages 395–403. Springer-Verlag, 1997.

[17] R.F. Paige. A Meta-Method for Formal Method Integration. Lecture Notes in
Computer Science, 1313:473–485, 1997.

15

L. Baresi and M. Pezzè

[18] M. Pezzè and S. Silva. Cabernet User Manual. Technical Report 47-94,
Politecnico di Milano, May 1994.

[19] L. Semmens and P. Allen. Using Yourdon and Z: An Approach to Formal
Specification. In J. Nicholls, editor, Proceedings of the 5th Z User Workshop.
Springer-Verlag, December 1990.

[20] J. Wing and A. Zaremski. Unintrusive Ways to Integrate Formal Specifications
in Practice. In Proceedings of Formal Software Development Methods (VDM
’91), volume 551 of Lecture Notes in Computer Science, pages 545–570.
Springer, 1991.

16

	Introduction
	Related work
	The MetaEnv approach
	Building rules
	Visualization rules
	Consistency framework

	Tool support
	Experiments
	Concluding remarks
	References

