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Fuzzy antihat graphs are graphs obtained as 2-clique-bond
compositions of fuzzy line graphs with three different types
of three-cliqued graphs. By the decomposition theorem of
Chudnovsky and Seymour [2], fuzzy antihat graphs form a
large subclass of claw-free, not quasi-line graphs with stability
number at least four and with no 1-joins.
A graph is W-perfect if its stable set polytope is described
by: nonnegativity, rank, and lifted 5-wheel inequalities.
By exploiting the polyhedral properties of the 2-clique-
bond composition, we prove that fuzzy antihat graphs are
W-perfect and we move a crucial step towards the solution
of the longstanding open question of finding an explicit linear
description of the stable set polytope of claw-free graphs.
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1. Introduction

Given a graph G = (V,E) and a vector w ∈ QV
+ of node weights, the stable set

problem is the problem of finding a set of pairwise nonadjacent nodes (stable set) of
maximum weight. Let α(G,w) denote the maximum weight of a stable set of G; we refer
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to α(G) = α(G, 1) (1 being the vector of all ones) as the stability number of G. The
stable set polytope, denoted by STAB(G), is the convex hull of the incidence vectors
of the stable sets of G. A linear system Ax � b is said to be defining for STAB(G) if
STAB(G) = {x ∈ RV : Ax � b}. Since the stable set problem is NP -hard, it is unlikely to
find a defining linear system of STAB(G) for general graphs. Nevertheless the study of the
stable set polytope of claw-free graphs, i.e., graphs such that the neighbourhood of each
node has stability number at most two, attracts the attention of the scientific community
since early seventies when the pioneering work of Edmonds on the matching polytope [6]
was translated for the stable set polytope of line graphs (a line graph L(G) of a graph
G is obtained by considering the edges of G as nodes of L(G) and two nodes of L(G)
are adjacent if and only if the corresponding edges of G have a common endnode). At
that time it seemed natural to look for a linear description of the stable set polytope for
classes of graphs that properly contain line graphs such as claw-free graphs or quasi-line
graphs, i.e., graphs such that the neighbourhood of each node can be partitioned into two
cliques. Notice that the class of claw-free graphs properly contains the class of quasi-line
graphs. A number of conjectures were posed on the inequalities that are facet defining
for STAB(G) when G is claw-free [14,29], but an explicit linear description of STAB(G)
is not known yet.

The study of the stable set polytope of claw-free graphs revived in late 80’s after
Grötschel, Lovász and Schrijver proved the equivalence of the separation and the opti-
mization problems over polyhedra [15]. They also noted that claw-free graphs constitute
an anomaly in this respect [16]. Indeed, a defining linear system for the stable set poly-
tope is known for almost all classes of graphs for which a polynomial time algorithm to
solve the weighted stable set problem is known. This is true for bipartite graphs, line
graphs [6], series-parallel graphs [19], and perfect graphs. On the contrary, for claw-free
graphs, a polynomial time algorithm to solve the weighted stable set problem is known
since 1980 [20,21] but no linear description of STAB(G) is at hand (see also [27]).

A breakthrough to start to understand the structure of claw-free graphs came out
with the decomposition theorem of Chudnovsky and Seymour [2,3]. This theorem states
that the class of claw-free graphs is the union of different classes of graphs that have
very specific features. In particular, Chudnovsky and Seymour proved that every claw-
free graph that does not admit a 1-join satisfies one of the following conditions: it has
stability number at most 3, or it is a fuzzy circular interval graph, or it can be obtained
by “properly composing” five types of graphs, called strips: fuzzy linear interval strips
(also called fuzzy Z1-strips), fuzzy Z2-strips, fuzzy Z3-strips, fuzzy Z4-strips, and fuzzy
Z5-strips.

We call fuzzy line the graphs that are composition of fuzzy linear interval strips
and denote them by Q�. Then we denote by Qc the set of quasi-line graphs that are
fuzzy circular interval and by Cs the class of striped graphs, claw-free graphs obtained by
composing fuzzy Zi-strips, i = 1, 2, 3, 4, 5. Thus the Chudnovsky–Seymour decomposition
states that every claw-free graph with stability number at least 4 and without 1-joins
belongs to Qc or to Cs. This result partially explains why it was so hard to deal with
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STAB(G) for all claw-free graphs simultaneously and suggests that, in order to find a
linear description of STAB(G) for claw-free graphs, it is convenient to study the facet
defining inequalities for each of the subclasses identified by the decomposition separately.

A linear inequality
∑

j∈V πjxj � π0 is said to be a rank inequality for STAB(G) if
there exists a subset U ⊆ V such that πi = 1 for each i ∈ U , πi = 0 for each i ∈ V \ U
and π0 = α(G[U ]) where G[U ] is the subgraph of G induced by U .

A defining linear system for STAB(G), when G ∈ Q�, was given by Chudnovsky and
Seymour [1] and consists of nonnegativity and rank inequalities. In 2008 Eisenbrand et
al. [7] provided a linear description of STAB(G) when G ∈ Qc. Their result shows that
rank inequalities are not sufficient to describe STAB(G) as soon as G is not fuzzy line.
Indeed, a special class of inequalities with two different nonzero coefficients (clique-family
inequalities [24]) has to be added to rank inequalities in order to describe STAB(G) when
G is quasi-line.

In this paper we investigate the polyhedral properties of the following strips: fuzzy
Z2-strips, fuzzy Z3-strips, and fuzzy Z4-strips, and their composition with fuzzy line
graphs. Since all these strips share the common feature of being three-cliqued, namely
their node set is partitionable into three cliques, we refer to graphs that are “composition”
of fuzzy line graphs with fuzzy Zi-strips, i = 2, 3, 4, as fuzzy antihat graphs.

We consider a family W of inequalities consisting of: nonnegativity, rank, and lifted
5-wheel inequalities (for formal definitions of these inequalities see the end of Section 2)
and we say that a graph is W-perfect if its stable set polytope is described only by
inequalities in W. Finally we prove that fuzzy antihat graphs are W-perfect.

When a Z5-strip is induced in a claw-free graph G, the inequalities in W are not
sufficient to describe STAB(G) and new facet defining inequalities for STAB(G) come
into play [9]. This case will be investigated in a companion paper [12] where it will be
provided a complete linear description of the stable set polytope of striped graphs.

In Sections 2 and 3 we recall the basic definitions and some polyhedral results. In Sec-
tion 4 we give some properties of the stable set polytope of claw-free graphs that contain
homogeneous pairs of cliques. In Section 5 we provide the minimal linear description of
the stable set polytope of an important subclass of three-cliqued graphs. In Sections 6,
7 and 8, we provide the minimal linear description of the stable set polytope of fuzzy
closed Zi-strips, i = 2, 3, 4, respectively. Finally, in Section 9, we prove that fuzzy antihat
graphs are W-perfect, i.e., the minimal linear description of the stable set polytope of
fuzzy antihat graphs consists of: nonnegativity, rank, and lifted 5-wheel inequalities.

2. Basic definitions

Let G = (V,E) be a simple, connected graph with node set V (G) and edge set E(G).
Two nodes u and v are adjacent (nonadjacent) if uv ∈ E(G) (uv /∈ E(G)). The neigh-
bourhood of v, written NG(v) or N(v), is the set of nodes of V (G) that are adjacent to
v and the closed neighbourhood N [v] is the set N(v)∪{v}. Two adjacent nodes u and v

are twins if N [u] = N [v]. The neighbourhood of a set S ⊆ V , denoted by N(S), is the set
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of nodes of V \ S that are adjacent to at least one node in S. The closed neighbourhood
of a set A ⊂ V is N [A] =

⋃
v∈A N [v] = A ∪N(A).

We also denote by G \ A the subgraph of G induced by V \ A where A ⊆ V and
by G + e (G − e, G/e) the subgraph of G obtained by adding (deleting, contract-
ing, respectively) the edge e. Given two subsets of nodes U,Z ⊂ V , we say that U

is Z-complete (Z-anticomplete) if every node u ∈ U is adjacent (nonadjacent) to every
node z ∈ Z. Obviously, U is Z-complete (Z-anticomplete) if and only if Z is U -complete
(U -anticomplete).

A k-path is a chordless path with k nodes and it is denoted by Pk. A k-hole Ck =
(v1, v2, . . . , vk) is a chordless cycle of length k; a k-antihole Ck is the complement of
a k-hole. A k-antiwheel W = (h : Ck) is a graph consisting of a k-antihole Ck and a
node h (hub of W ) adjacent to every node of Ck. If k = 3, the 3-antiwheel is called claw
and denoted by (y : w1, w2, w3), where y is the centre of the claw. If k = 5, then C5 is
isomorphic to C5 and we refer to W as a 5-wheel. A node is simplicial if its neighbourhood
induces a clique, i.e., a complete subgraph. An edge ab is simplicial if N(a) \ {b} and
N(b) \ {a} are both cliques.

A clique-cutset of G is a clique whose removal disconnects G. A graph G = (V,E)
admits a 1-join if V can be partitioned into two sets V1 and V2 and, for i = 1, 2, there
are subsets Ai of Vi such that: A1∪A2 is a clique, V1 \A1 and V2 \A2 are nonempty, and
the only edges between V1 and V2 are those between A1 and A2. Clearly, if G admits a
1-join then A1 ∪A2 is a clique-cutset of G.

Suppose that V0, V1, and V2 are a partition of V and, for i = 1, 2, there are subsets
Ai, Bi of Vi satisfying the following:

• V0∪A1∪A2 and V0∪B1∪B2 are cliques, and no node of V0 is adjacent to Vi\(Ai∪Bi)
for i = 1, 2,

• for i = 1, 2, Ai ∩Bi = ∅ and Ai, Bi and Vi \ (Ai ∪Bi) are all nonempty,
• for all v1 ∈ V1 and v2 ∈ V2, either v1 is not adjacent to v2, or v1 ∈ A1 and v2 ∈ A2,

or v1 ∈ B1 and v2 ∈ B2.

The triple (V0, V1, V2) is called a generalized 2-join in [3].
A strip (H, a0, b0) is a claw-free graph H with two nonadjacent simplicial nodes

a0, b0 ∈ V (H).
A closed strip (H, a0b0) is the graph H+a0b0 where (H, a0, b0) is a strip. A contracted

closed strip H/a0b0 is obtained from (H, a0b0) by contracting the edge a0b0 into the
node z0.

Given two strips (Gi, a
i
0, b

i
0), for i = 1, 2, let Ai, Bi denote the set of nodes of

Gi \ {ai0, bi0} adjacent in Gi to ai0, bi0 respectively. The strip composition defined by
Chudnovsky and Seymour in [1] produces a new graph G by deleting the four nodes
ai0, b

i
0, for i = 1, 2, and by completely joining the nodes of A1 with those of A2 and the

nodes of B1 with those in B2. Clearly, this new graph G admits the generalized 2-join
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(V0, V (G1) \ {a1
0, b

1
0}, V (G2) \ {a2

0, b
2
0}) where V0 = (A1 ∩B1)∪ (A2 ∩B2). Note that, by

claw-freeness, N [Ai ∩Bi] = N [ai0] ∪N [bi0] for i = 1, 2.

Observation 1. The closed strip (G, a0b0) is obtained as a strip composition of (H, v1
1 , v

1
2)

and the 4-path (v2
1 , a0, b0, v

2
2). The contracted closed strip G/a0b0 is obtained as a strip

composition of (H, v1
1 , v

1
2) and the 3-path (v2

1 , z0, v
2
2).

In [11] we introduced the following composition.

Definition 2. Let G1 and G2 be two disjoint graphs. Let (ai0, bi0) be an ordered pair of
nodes such that ai0b

i
0 is a simplicial edge of Gi and let Ai = N(ai0) \ {bi0} and Bi =

N(bi0) \ {ai0}, i = 1, 2.
The 2-clique-bond composition of G1 and G2 along (a1

0, b
1
0) and (a2

0, b
2
0) is the graph

G obtained by deleting the nodes ai0 and bi0, for i = 1, 2, and joining every node in A1
with every node in A2 and every node of B1 with every node of B2.

Under the restriction that N [Ai ∩ Bi] = N [ai0] ∪N [bi0] for i = 1, 2, the 2-clique-bond
produces graphs that admit generalized 2-joins where the role of V0 is played by the set
(A1 ∩ B1) ∪ (A2 ∩ B2). In the following we say that an edge ai0b

i
0 is super simplicial if

it is simplicial and moreover it satisfies N [Ai ∩ Bi] = N [ai0] ∪ N [bi0]. It is not difficult
to check that the 2-clique-bond composition preserves claw-freeness when performed
along ordered pairs corresponding to super simplicial edges. Thus, the 2-clique-bond
composition applied on claw-free graphs along such ordered pairs produces the same
graphs as the strip composition: the only difference is that the former applies on closed
strips while the latter applies on strips. In [11] we provide examples of graphs obtained
by 2-clique-bond composition that do not admit a generalized 2-join.

For basic results on the stable set polytope we refer to textbooks such as [23,16,
27]. In particular, we will use the following concepts: n vectors x1, x2, . . . , xn are affinely
independent if and only if the vectors (1, x1), (1, x2), . . . , (1, xn) are linearly independent.
A polyhedron contained in Rn has dimension p if and only if it contains p + 1 affinely
independent vectors. Note that STAB(G) has dimension n = |V (G)| as the n vectors
of the canonical base of Rn plus the zero vector constitute n + 1 affinely independent
vectors in STAB(G).

Given a vector β ∈ R|V | and a subset U ⊆ V , define βU ∈ R|V | as the subvec-
tor of β restricted to the elements of U and let β(U) =

∑
i∈U βi. A linear inequality∑

j∈V (G) βjxj � β0 is valid for STAB(G) if it holds for all x ∈ STAB(G). For short,
we also denote a linear inequality βTx � β0 as (β, β0). A valid inequality for STAB(G)
defines a facet of STAB(G) if and only if it is satisfied as an equality by |V (G)| affinely
independent incidence vectors of stable sets of G. A stable set S is tight for (β, β0)
if β(S) = β0 and S violates (β, β0) if β(S) > β0. Given a valid inequality (β, β0) of
STAB(G), its supporting graph Gβ is the subgraph of G induced by the nodes with
nonzero coefficients in (β, β0). The nonnegativity inequalities xv � 0, v ∈ V (G), are
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known to be facet defining for STAB(G) and we refer to them as trivial inequalities. Ba-
sic properties of the stable set polytope (see [8,25,22]) establish that the nonnegativity
inequalities define the only facets of STAB(G) containing the zero vector and that any
other facet defining inequality (β, β0) has β � 0, and β0 > 0. This implies that for each
nontrivial facet defining inequality βTx � β0, there exist n linearly independent vectors
xi satisfying βTxi = β0 for i = 1, . . . , n. As a consequence there exists at least one tight
stable set for (β, β0) containing v, for each node v ∈ V (G). Moreover, it is not difficult to
see that if (β, β0) is facet defining for STAB(G) with supporting graph Gβ , then (β, β0)
is also facet defining for STAB(Gβ).

A clique inequality (5-hole inequality) is a rank inequality where the subgraph G[U ] is
a clique (a 5-hole, respectively). Given a 5-wheel W = (h : v1, v2, v3, v4, v5), the inequality∑5

i=1 xvi + 2xh � 2 is called 5-wheel inequality and it is facet defining for STAB(W ).
For the sake of completeness, we recall the definition of the sequential lifting procedure

defined in [25] that will be often mentioned in the following sections. Let S (G) denote
the family of the stable sets of G = (V,E). If

∑
j∈V \{v} βjxj � β0 is a facet defining

inequality of STAB(G \ {v}), then the inequality

∑

j∈V \{v}
βjxj + βvxv � β0 with βv = β0 − max

S∈S (G\N [v])
β(S) (1)

is facet defining for STAB(G). This inequality is called sequential lifting of (βV \{v}, β0)
and βv is called the lifting coefficient of v. Starting from a facet defining inequality in
a class C for a lower dimensional polytope, say STAB(G′) with G′ being an induced
subgraph of G, the lifting procedure is usually applied sequentially: nodes in the set
V (G) \ V (G′) are lifted one after the other and a separate optimization problem has to
be solved to determine each lifting coefficient. The resulting inequality depends on the
order in which the variables are lifted, but, in all cases, it is a facet defining inequality for
the higher dimensional polytope STAB(G). Inequalities obtained in this way are called
lifted C inequalities.

3. Preliminary results

In this section we present some general results on the stable set polytope of a graph G.
The first lemma will be often used in the remainder of the paper. Its proof follows from
the full dimensionality of STAB(G) [27].

Lemma 3. Let (β, β0) be a facet defining inequality of STAB(G). Then, for any valid
inequality (γ, γ0) that is not a positive scalar multiple of (β, β0), there exists a stable set
S such that β(S) = β0 and γ(S) < γ0.

Moreover, it is not difficult to observe the following:
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Proposition 4. Let (β, β0) be a nontrivial facet defining inequality of STAB(G). If u, v ∈
V (G) with N [u] ⊆ N [v], then βu � βv. In particular, if u and v are twins, then βu = βv.

Proof. As (β, β0) is facet defining there exists a tight stable set S containing v. Since
S \ {v} ∪ {u} is a stable set, β(S \ {v} ∪ {u}) = β(S) − βv + βu � β0 = β(S) and the
claim follows. �

Next, we present a few results on the stable set polytope of graphs with stability
number two.

Definition 5. Let G be a graph and H an induced subgraph of G with α(H) = 2. For
any set K ⊆ V (H), let ÑH(K) denote the set of all nodes v ∈ V (H) \ K for which
NH(v) ⊇ K. If K induces a clique or K = ∅ then the inequality

2x(K) + x(ÑH(K)) � 2 (2)

is the clique-neighbourhood inequality generated by K.

Notice that, for any maximal clique K, ÑH(K) = ∅ and the associated clique-
neighbourhood inequality becomes a clique inequality. Rank inequalities with right hand
side two are also particular clique-neighbourhood inequalities where ÑH(K) = V (H) and
K = ∅. Finally, lifted 5-wheel inequalities are clique-neighbourhood inequalities where
the nodes in K are copies of the hub of a 5-wheel. In the following we simply write Ñ(K)
when H = G and thus α(G) = 2.

The next result is attributed to W. Cook in [28].

Theorem 6. Let G be a graph with α(G) = 2. Then STAB(G) is described by:

• nonnegativity inequalities,
• clique-neighbourhood inequalities.

Moreover, a clique-neighbourhood inequality is facet defining for STAB(G) if and only if
no connected component of G[Ñ(K)] is bipartite.

As an easy consequence of Theorem 6 we have that:

Corollary 7. Let G = (V,E) be a graph. Let (β, β0) be a clique-neighbourhood inequality
generated by K ⊂ V that is not a clique inequality. If ÑGβ

(K) is partitionable into two
cliques then (β, β0) is not facet defining.

Corollary 8. Let G = (V,E) be a claw-free graph with a super simplicial edge a0b0 and let
z0 be the node obtained by the contraction of a0b0. Let (β, β0) be a clique-neighbourhood
inequality generated by K that is facet defining for STAB(G) (STAB(G/a0b0)). Then no
node in N [a0] ∪N [b0] (N [z0], respectively) belongs to K.
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Proof. Suppose conversely that there exists a node h ∈ K ∩ (N [a0] ∪N [b0]). By Corol-
lary 7, h is different from a0 and b0 and it does not belong to N(a0)∩N(b0) because all
these nodes have a neighbourhood that is partitioned into two cliques. The same holds
for the node z0.

Let A and B denote the sets N(a0) and N(b0), respectively, and assume, without
loss of generality, that h ∈ K ∩ (A \ B). Since G is claw-free and α(Gβ) = 2, it follows,
by Theorem 6, that each connected component of Gβ [Ñ(K)] contains an odd hole C of
length at least 5. Let T indicate the nodes of C \ (A ∪ {a0}). Clearly T is a clique since
otherwise (h : a0, u, v) would be a claw for each pair of nonadjacent nodes u, v ∈ T . Thus,
the odd hole C partitions into the cliques T and C ∩ (A ∪ {a0}), a contradiction. �

We now show a property of clique-neighbourhood inequalities that will be used later:

Lemma 9. Let G be a claw-free graph that does not contain a (2t+1)-antiwheel with t � 3.
Let (β, β0) be a clique-neighbourhood inequality generated by K that is facet defining for
STAB(G) and is different from a clique inequality. If K 	= ∅ and Gβ [Ñ(K)] is connected
then (β, β0) is a lifted 5-wheel inequality.

Proof. Since the inequality (β, β0) is facet defining, no connected component of
Gβ [Ñ(K)] is bipartite and, in particular, Gβ [Ñ(K)] does not contain isolated nodes.
Since G is claw-free, Gβ [Ñ(K)] is triangle-free, and so Gβ [Ñ(K)] contains a (2t+1)-hole
with t � 2. Then, by hypothesis, t = 2, i.e., there exists a 5-hole C contained in
Gβ [Ñ(K)]. As 5-holes are self-complementary, C induces a 5-hole also in Gβ .

Now we prove that (β, β0) can be obtained from the (lifted) 5-wheel inequality induced
by C ∪K by sequentially lifting all the nodes of V (Gβ) \ (C ∪K). This amounts to show
that all nodes in V (Gβ) \ (C ∪K) can be lifted with coefficient one.

Now, let W = {w1, w2, . . . , ws} be the longest sequence of nodes of V (Gβ) \ (C ∪K)
that can be lifted with coefficient 1 starting from the (lifted) 5-wheel inequality defined
by C ∪K. Suppose that s < |V (Gβ) \ (C ∪K)|, i.e., V (Gβ) \ (C ∪K ∪W ) is nonempty.

Since V (Gβ) \ (C ∪W ) ⊆ ÑGβ
(K), each node v ∈ V (Gβ) \ (C ∪W ) is adjacent to all

nodes with coefficient 2 and, moreover, α(Gβ \N [v]) � 1. Thus, according to equation (1)
and by the maximality of W , the lifting coefficient of v is 2 for each v ∈ V (Gβ)\(C∪W ).
It follows that V (Gβ) \ (C ∪ K ∪ W ) is (C ∪ K ∪ W )-complete, i.e., Gβ [Ñ(K)] is not
connected, a contradiction. Hence, s = |V (H) \ (C ∪K)| and the lemma follows. �

In [1] Chudnovsky and Seymour give the following definition of fuzzy linear interval
graphs:

Definition 10. A graph G = (V,E) is said to be fuzzy linear interval if:

1. there is a map φ from V to a line L, and
2. there is a family I of intervals of L (none including another) such that no point of

L is an end of more than one interval, so that
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3. for u, v ∈ V , if uv ∈ E then {φ(u), φ(v)} is a subset of one interval of I, and if
uv /∈ E then φ(u) and φ(v) are both ends of any interval of I containing both of
them (and in particular, if φ(u) = φ(v) then u and v are adjacent).

Moreover, if [a, b] is an interval of I such that φ−1(a) and φ−1(b) are both nonempty
subsets of V and at least one of the sets φ−1(a) and φ−1(b) has more than one member,
then the interval [a, b] is said to be fuzzy.

A fuzzy linear interval graph with two nonadjacent simplicial nodes a0 and b0 is a
fuzzy linear interval strip (G, a0, b0) and graphs that are strip compositions of fuzzy
linear interval strips are called fuzzy line graphs.

Chudnovsky and Seymour provided a linear description of the stable set polytope of
fuzzy line graphs (see [29] for an alternative proof):

Theorem 11. (Chudnovsky and Seymour [1]) If G is a fuzzy line graph, then STAB(G)
is described by nonnegativity and rank inequalities.

Next proposition concerns the coefficients of the endnodes of simplicial edges in facet
defining inequalities of STAB(G).

Proposition 12. (Galluccio et al. [10]) Let G be a graph and let (β, β0) be a nontrivial
facet defining inequality of STAB(G). If uv is a simplicial edge of Gβ, then βu = βv.

Finally, we consider two different polyhedral compositions. The first one was intro-
duced by Chvátal [4] and concerns the stable set polytope of graphs composed via
clique-cutsets. More precisely:

Theorem 13. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Let G1 ∪ G2 =
(V1 ∪ V2, E1 ∪ E2) and G1 ∩ G2 = (V1 ∩ V2, E1 ∩ E2). If G1 ∩ G2 is a complete graph,
then the defining linear system of STAB(G1 ∪G2) is given by the union of the defining
linear systems of STAB(G1) and STAB(G2).

As a corollary of the previous result we have the following:

Corollary 14. Let G be a graph and let (β, β0) be a facet defining inequality for STAB(G).
Then

i) Gβ does not contain a clique-cutset;
ii) if u ∈ V (Gβ) is a simplicial node in Gβ, then Gβ is a maximal clique of G.

Proof. As observed in Section 2, (β, β0) is also a facet defining inequality for STAB(Gβ).
i) Suppose by contradiction that Gβ contains a clique Q such that Gβ \Q is discon-

nected. Let H1 and H2 be the two (possibly disconnected) nonempty subgraphs of Gβ
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obtained by deleting Q. For i = 1, 2, let Gi be the graph induced by V (Hi) ∪ Q. Then
Gβ = G1 ∪ G2, G1 ∩ G2 is the complete graph induced by Q, and, by Theorem 13, Gβ

is a subgraph of either G1 or G2, a contradiction.
ii) Suppose there exists a node v ∈ V (Gβ) \NGβ

(u) different from u. Then NGβ
(u) is

a clique-cutset in Gβ , contradicting i). �
From ii) of Corollary 14 and Proposition 12, it follows:

Corollary 15. Let G be a graph with a simplicial edge uv. Then the only facet defining
inequalities for STAB(G) with different coefficients on u and v are the clique inequalities
x(N [u] \ {v}) � 1 and x(N [v] \ {u}) � 1.

It is then convenient to give names to the facet defining inequalities indicated in
Proposition 12 and to some particular facet defining inequalities for STAB(G/a0b0):

Definition 16. Let G be a graph with a simplicial edge a0b0 and let A = N(a0)\{b0} and
B = N(b0) \ {a0}. We call even a facet defining inequality of STAB(G) with nonzero
coefficients on a0 and b0 that is different from xa0 + xb0 � 1 and we call odd a facet
defining inequality of STAB(G/a0b0) with nonzero coefficient on z0 that is different from
x(A ∪ {z0}) � 1, x(B ∪ {z0}) � 1 and xz0 � 0.

The second composition we consider is the 2-clique-bond composition described in
Definition 2. In order to present the major polyhedral features of this composition we need
the following definition describing the facet defining inequalities obtained as composition
of inequalities of smaller polytopes:

Definition 17. Let G be the 2-clique-bond composition of G1 and G2 along (a1
0, b

1
0) and

(a2
0, b

2
0). Let zi0 be the node resulting from the contraction of ai0bi0, i = 1, 2.

Let βix � βi
0 be an even inequality of STAB(Gi) and let βjx � βj

0 be an odd inequality
of STAB(Gj/a

j
0b

j
0) such that βi

ai
0

= βi
bi0

= βj

zj
0

= 1, for i, j ∈ {1, 2} and i 	= j.
An inequality of the form

∑

v∈V (Gi\{ai
0,b

i
0})

βi
vxv +

∑

v∈V ((Gj/a
j
0b

j
0)\{z

j
0})

βj
vxv � βi

0 + βj
0 − 1 (3)

is said to be an even-odd combination of (βi, βi
0) and (βj , βj

0) (see Fig. 1 for an example).

Note that the conditions βi
ai
0

= βi
bi0

= βj

zj
0

= 1, for i, j = 1, 2 and i 	= j, are not
restrictive because, by Proposition 12, βi

ai
0

= βi
bi0

.

Theorem 18. (Galluccio et al. [11]) Let Gi be a graph with a simplicial edge ai0b
i
0, i = 1, 2,

and let G be the 2-clique-bond composition of G1 and G2 along (a1
0, b

1
0) and (a2

0, b
2
0). The

following system is defining for STAB(G):
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• nonnegativity inequalities;
• clique inequalities induced by A1 ∪A2 and B1 ∪B2;
• facet defining inequalities of STAB(Gi) with zero coefficients on ai0 and bi0, i = 1, 2;
• even-odd combinations of facet defining inequalities of STAB(Gi) and STAB(Gj/

aj0b
j
0) for each i, j = 1, 2 and i 	= j.

Fig. 1. (a) The odd inequality
∑

u∈• xu � 2; (b) the even inequality
∑

u∈• xu � 3; (c)
∑

x∈• xu � 4, the
even-odd combination of (a) and (b).

The above result shows explicitly how to combine the facet defining inequalities of four
polytopes related to G1 and G2 in order to obtain a defining linear system for STAB(G)
when G is the 2-clique-bond composition of G1 and G2. The next lemma shows that
the class of rank facet defining inequalities of the stable set polytope is closed under
even-odd combinations.

Lemma 19. (Chudnovsky and Seymour [11]) Even-odd combinations of rank inequalities
that are facet defining for STAB(Gi) and STAB(Gj/a

j
0b

j
0), i, j = 1, 2 and i 	= j, are rank

inequalities that are facet defining for STAB(G).

Notice that the 2-clique-bond composition requires an edge to be simplicial but, in or-
der to preserve the claw-freeness of the resulting graph, in the rest of the paper we always
assume that the edges involved in the 2-clique-bond composition are super simplicial.
This requirement guarantees that in claw-free graphs the 2-clique-bond composition is
equivalent to the strip composition described by Chudnovsky and Seymour.

4. Homogeneous pairs of cliques

In [3], a homogeneous pair of cliques in a graph G is defined as a pair (A,B) such that:
i) A,B are cliques in G and A∩B = ∅; ii) no vertex of G\ (A∪B) has both a neighbour
and a non-neighbour in A, and the same for B; iii) |A| � 2 or |B| � 2. A homogeneous
pair of cliques is then a particular case of the homogeneous pair defined by Chvátal and
Sbihi in [5].
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Definition 20. Let G = (V,E) be a claw-free graph. A pair of nodes {u, v} ⊂ V is said
to be fuzzy if one of the following holds:

a) if uv ∈ E then G− uv is claw-free,
b) if uv /∈ E then G + uv is claw-free.

Chudnovsky and Seymour define the thickening as a procedure to build homogeneous
pair of cliques in claw-free graphs. We slightly extend their definition [3] to include
deletion/addition of the single edge uv.

Definition 21. Given a graph H and a set F of disjoint fuzzy pairs of nodes of V (H),
a thickening of H on F is a graph G satisfying the following:

• for every v ∈ V (H) there is a nonempty clique Xv ⊆ V (G) and the family {Xv | v ∈
V (H)} is a partition of V (G);

• if uv /∈ E(H) and {u, v} /∈ F , then Xu is Xv-anticomplete in G;
• if uv ∈ E(H) and {u, v} /∈ F , then Xu is Xv-complete in G;
• if {u, v} ∈ F , then

either Xu is neither Xv-complete nor Xv-anticomplete in G

or Xu is Xv-complete (Xv-anticomplete) if and only if uv /∈ E(H) (uv ∈ E(H)).

Observe that if F = ∅, then G is obtained only by substituting cliques for nodes in H

(see [4]). Observe also that a thickening on the fuzzy pair {u, v} of F such that |Xu| � 2
or |Xv| � 2 produces a homogeneous pair of cliques (Xu, Xv) in G.

We say that a graph G is fuzzy if it is obtained from H by performing a thickening
on a (possibly empty) set of fuzzy pairs. In order to investigate the stable set polytope
of a fuzzy graph G it is convenient to deal with facet defining inequalities (β, β0) whose
supporting graph Gβ is minimal in some respect. For instance, we may assume that Gβ

does not contain twins, because twins have the same coefficient in any facet defining
inequality of STAB(G) by Proposition 4. Furthermore, Gβ has no clique-cutset because
of item i) of Corollary 14. The structure of Gβ can be further specified by considering
the following lemma of Eisenbrand et al.:

Lemma 22. (Eisenbrand et al. [7]) Let (β, β0) be a facet defining inequality of STAB(G).
Then there exists a graph G′, obtained from G by removing some edges, such that (β, β0)
is also facet defining for STAB(G′) and no homogeneous pair of cliques of G′ contains
an induced C4.

As a consequence, we may assume that the homogeneous pairs of cliques contained in
Gβ do not contain any induced C4. In his thesis, King proved an interesting property of
homogeneous pair of cliques that do not contain C4’s:
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Lemma 23. (King [17]) Let (Xu, Xv) be a homogeneous pair of cliques with Xu =
{u1, u2, . . . , u|Xu|} and Xv = {v1, v2, . . . , v|Xv|}. If (Xu, Xv) contains no induced C4,
then the nodes of Xu and Xv can be ordered so that:

• N(ui) ∩Xv ⊇ N(uj) ∩Xv for 1 � i � j � |Xu|,
• N(vi) ∩Xu ⊇ N(vj) ∩Xu for 1 � i � j � |Xv|.

To our purposes we can further reduce the number of nodes of Xu∪Xv by eliminating
twins. This allows us to identify a few types of homogeneous pairs of cliques that can
appear in the supporting graph of a minimal facet defining inequality.

Lemma 24. Let (β, β0) be a facet defining inequality such that Gβ contains a homogeneous
pair of cliques (Xu, Xv) with |Xu| = p and |Xv| = q, p � q � 1. If (Xu, Xv) contains no
twins and no induced C4, then p ∈ {q, q + 1} and the nodes in Xu ∪Xv can be ordered
so that:

1. if p = q then either N(ui) ∩Xv = {v1, v2, . . . , vq−i+1} for i = 1, . . . , p, and N(vi) ∩
Xu = {u1, u2, . . . , up−i+1} for i = 1, . . . , q, or N(ui) ∩ Xv = {v1, v2, . . . , vq−i} for
i = 1, . . . , p, and N(vi) ∩Xu = {u1, u2, . . . , up−i} for i = 1, . . . , q;

2. if p = q+1 then N(ui)∩Xv = {v1, v2, . . . , vq−i+1} for i = 1, . . . , p, and N(vi)∩Xu =
{u1, u2, . . . , up−i} for i = 1, . . . , q.

Proof. Assume that the nodes of (Xu, Xv) are ordered according to Lemma 23. Since
Xu contains no twins, there do not exist two nodes of Xu with the same adjacencies
in Xv. It follows that N(ui)∩Xv ⊃ N(ui+1)∩Xv and, in particular, that |N(ui)∩Xv| >
|N(ui+1) ∩Xv|, for i = 1, . . . , p− 1.

Then, as 0 � |N(ui) ∩ Xv| � q for all i = 1, . . . , p, for the pigeon hole principle, we
have that p � q + 1. Moreover |N(ui) ∩Xv| − |N(ui+1) ∩Xv| = 1, for i = 1, . . . , p − 1.
Indeed, assume by contradiction that there exist ui, ui+1 ∈ Xu such that N(ui) ∩Xv =
{v1, . . . , vj}, N(ui+1) ∩Xv = {v1, . . . , vk} and j − k � 2. Let vh ∈ Xv with j > h > k.
Then N(vh)∩Xu is either {u1, . . . , ui} = N(vj)∩Xu or {u1, . . . , ui, ui+1} = N(vk)∩Xu,
contradicting the hypothesis that Xv contains no twins.

Now, it is not difficult to verify that the only feasible configurations are those listed
in the statement. �

We call canonical the homogeneous pair of cliques satisfying Lemma 24. See Fig. 2 to
see examples of the three types of canonical homogeneous pair of cliques.

Summarizing the previous results, hereafter we consider facet defining inequalities
whose supporting graph contains no twins and each of its homogeneous pair of cliques
is canonical. For short, we say that such facet defining inequalities are minimal.
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Fig. 2. In (a) and (b) homogeneous pairs of cliques (Xu, Xv) with p = q = 4; in (c) a homogeneous pair of
cliques with p = 4 and q = 3.

5. Nice three-cliqued graphs

In this section we deal with graphs whose node set can be covered by three cliques.

Definition 25. Let H be a graph whose node set can be covered by three cliques A, B,
and C such that A ∩ C = ∅ and B ∩ C = ∅. The graph G obtained from H by adding
two nodes a0 and b0 such that N(a0) = A and N(b0) = B is a three-cliqued strip and is
denoted by G = (A,B,C, a0, b0).

A nice three-cliqued graph is a closed three-cliqued strip G = (A,B,C, a0b0) such that
α(G \ {a0, b0}) � 2.

The previous definition of three-cliqued strip is slightly more general than the one
given by Chudnovsky and Seymour [3]. In fact, we allow A and B to intersect. Notice
also that three-cliqued graphs (even if nice) are in general not claw-free. The following
results concern the linear description of the stable set polytope of nice three-cliqued
graphs.

Theorem 26. Let G = (A,B,C, a0b0) be a nice three-cliqued graph such that a0b0 is super
simplicial. Then STAB(G) is described by nonnegativity and clique-neighbourhood in-
equalities. In particular, the inequalities with nonzero coefficients on the nodes a0 and b0
are rank inequalities.

Proof. Suppose conversely that there exists a nontrivial facet defining inequality (β, β0)
of STAB(G) that is not a clique-neighbourhood inequality. Since clique inequalities are
a special kind of clique-neighbourhood inequalities, we may assume that (β, β0) is not a
clique inequality.

First observe that α(G) � 3. Denote by Gβ the supporting graph of (β, β0). Let
Aβ = A∩V (Gβ), Bβ = B ∩V (Gβ), and Cβ = C ∩V (Gβ). Then Cβ 	= ∅, since otherwise
Gβ is partitionable into two cliques, i.e., α(Gβ) � 2, and, by Theorem 6, (β, β0) is a
clique-neighbourhood inequality. Contradiction.

Moreover, as a0b0 is simplicial, βa0 = βb0 by Corollary 15. If βa0 = βb0 = 0, then
α(Gβ) � 2 and (β, β0) is a clique-neighbourhood inequality by Theorem 6. So assume
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that βa0 = βb0 	= 0, i.e., a0 and b0 belong to V (Gβ). Then there exist two nonadjacent
nodes a1 ∈ Aβ \Bβ and b1 ∈ Bβ \Aβ , since otherwise Aβ ∪Bβ would be a clique-cutset
in Gβ , contradicting claim i) of Corollary 14.

As (β, β0) is not the clique inequality defined by Aβ ∪{a0}, there exists, by Lemma 3,
a stable set S that is tight for (β, β0) and that does not intersect Aβ ∪ {a0}. It follows
that b0 ∈ S, otherwise S∪{a0} would be a stable set violating (β, β0). As a consequence,
S = {b0, c̃} with c̃ ∈ Cβ and, by Proposition 12, also S′ = {a0, c̃} is tight.

If there exists a ∈ (Aβ \ Bβ) \ N(c̃), then {b0, c̃, a} violates (β, β0), a contradiction.
Symmetrically, if there exists b ∈ (Bβ \Aβ) \N(c̃), then {a0, c̃, b} violates (β, β0), a con-
tradiction. It follows that N(c̃) ⊇ (Aβ \Bβ) ∪ (Bβ \Aβ).

Consider now the inequality (γ, 2) obtained from the 5-hole inequality induced by
(a0, b0, b1, c̃, a1) by sequentially lifting the other nodes of Gβ as follows: first the nodes
in (Aβ \Bβ) ∪ (Bβ \Aβ) receive coefficient 1 because their non-neighbourhood in the
supporting graph of the inequality that is lifted is a nonempty clique; then the nodes
in Aβ ∩Bβ receive coefficient 1 because their non-neighbourhood is c̃ (since a0b0 is
super simplicial); finally, we lift with coefficient 1 the nodes in Cβ \ {c̃} whose non-
neighbourhood is a clique and with coefficient 0 all the remaining nodes in Cβ .

Suppose now that there exists a stable set S′′ that is tight for (β, β0) and not tight
for (γ, 2). Then S′′ = {u, v} with u ∈ Cβ \ Cγ and v ∈ Aβ ∩ Bβ . As γu = 0 then
Gγ \N [u] contains a stable set of size 2: either {a, b0} with a ∈ Aβ \Bβ or {b, a0} with
b ∈ Bβ \ Aβ . Let us assume without loss of generality that the former case occurs, and
so βu + βa + βb0 � β0. Since {b0, c̃} is tight for (β, β0), βc̃ + βb0 = β0 and so, βc̃ �
βu + βa, i.e., βc̃ > βu and βc̃ > βa. Therefore {c̃, v} is a stable set that violates (β, β0).
A contradiction.

By Lemma 3 it follows that (β, β0) is a positive scalar multiple of (γ, 2) and the thesis
follows. �
Theorem 27. Let G = (A,B,C, a0b0) be a nice three-cliqued graph and let z0 denote
the node resulting from the contraction of a0b0. Then STAB(G/a0b0) is described by
nonnegativity and clique-neighbourhood inequalities. In particular, z0 has coefficient zero
or one in every facet defining inequality of STAB(G/a0b0).

Proof. As α(G \ {a0, b0}) � 2 and G \N [z0] is a clique, it follows that α(G/a0b0) � 2.
Thus we can apply Theorem 6 to obtain the first part of the thesis. Now we prove that
every clique-neighbourhood inequality with nonzero coefficient on z0 has coefficient 1
on such a node. Indeed, select a clique K � z0 and consider the clique-neighbourhood
inequality generated by K: 2x(K) + x(Ñ(K)) � 2. Since Ñ(K) ⊆ A ∪ B is partitioned
into two cliques, it follows, by Corollary 7, that the clique-neighbourhood inequality
generated by K is not facet defining unless Ñ(K) = ∅, i.e., the clique-neighbourhood
inequality is actually a clique inequality. Hence, z0 /∈ K in any facet defining inequality
with coefficients {1, 2} and the thesis follows. �
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Fig. 3. (a) A nice three-cliqued strip G = (A,B,C, a0, b0); (b) the corresponding closed strip (G, a0b0);
(c) the contracted graph G/a0b0.

Observe now that there exist non-rank facet defining inequalities with nonzero co-
efficient on z0: for instance, consider the nice three-cliqued graph (A,B,C, a0b0) with
A = {a1, a2}, B = {b1}, C = {c1, c2}, and edges as in Fig. 3 (b). It is easy to verify that
the graph obtained by contracting the edge a0b0 into a single node z0 supports a 5-wheel
inequality with coefficient 1 on node z0 (see Fig. 3). Notice that G is not claw-free.

In the next sections we shall prove that this situation never occurs in claw-free three-
cliqued strips Zi, i = 2, 3, 4.

6. Fuzzy Z2-strips

In this section we specialize the results obtained so far to a special class of claw-free
nice three-cliqued graphs: the closed fuzzy Z2-strips.

Definition 28. Let G∗ be a three-cliqued strip (A∗, B∗, C∗, a0, b0) such that the following
conditions hold:

1) A∗ = {a1, a2, . . . , an}, B∗ = {b1, b2, . . . , bn}, and C∗ = {c1, c2, . . . , cn} are three
pairwise disjoint cliques,

2) for 1 � i, j � n, ai and bj are adjacent if and only if i = j,
3) for 1 � i � n and 1 � j � n, ci is adjacent to aj , bj if and only if i 	= j.

A fuzzy Z2-strip (A,B,C, a0, b0) is obtained from G∗ by deleting a (possibly empty) set
of nodes Y ⊆ A∗ ∪ B∗ ∪ C∗, such that A = A∗ \ Y , B = B∗ \ Y , C = C∗ \ Y , |C| � 2,
and possibly performing a thickening on the following pairs:

– {ai, ci} for at most one value of i ∈ {1, . . . , n}, with bi ∈ Y ,
– {bi, ci} for at most one value of i ∈ {1, . . . , n}, with ai ∈ Y ,
– {ai, bi} for at most one value of i ∈ {1, . . . , n}, with ci ∈ Y .

In the following, we denote by û a generic node in Xu.

Lemma 29. Let G = (A,B,C, a0b0) be a closed fuzzy Z2-strip. Then G and G/a0b0 do
not contain a (2t + 1)-antihole, t � 3, as an induced subgraph.
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Proof. Suppose conversely that G contains a (2t + 1)-antihole H with t � 3 and let the
nodes of H = (v0, v1, . . . , v2t) be ordered so that two nodes are not adjacent if and only
if they are consecutive on H (sums are taken modulo 2t+ 1). Suppose first that a0 ∈ H.
Then a0 is adjacent to exactly 2t−2 nodes of H and, consequently, H contains either 2t−3
(if b0 ∈ H) or 2t−2 (if b0 /∈ H) nodes of A. In both cases, H would contain a clique of size
2t−2, contradicting the hypothesis that t � 3. Hence a0 /∈ H and symmetrically b0 /∈ H.

Suppose now that z0 ∈ H and let z0 = v0. Then v1 and v2t belong to C and, moreover,
{v2, v3, . . . , v2t−1} ⊆ A∪B. To preserve the nonadjacency of consecutive nodes in H, the
nodes in H \ {v2t, v0, v1} belong alternatively to A and B. Without loss of generality, let
v2 = âi ∈ Xai

for some i ∈ {1, . . . , n} (where n = |A∗| = |B∗| = |C∗| as in Definition 28).
Thus v1 = ĉi ∈ Xci and v2t−1 ∈ B. Since v2v2t−1 ∈ E, v2t−1 = b̂i ∈ Xbi , thus implying
that no pair in {ai, bi, ci} is fuzzy. But then v2t = ĉk ∈ Xck with k 	= i and v2tv2t−1 ∈ E,
a contradiction.

Thus z0 /∈ H and a vertex ĉi ∈ H otherwise H would be partitioned into two cliques.
Set ĉi = v0 for some i ∈ {1, . . . , n} where n is defined as above. Then v1 ∈ Xai

∪ Xbi .
Without loss of generality, let v1 = âi. Since âi is anticomplete to B\Xbi , H \{v0, v1, v2}
does not contain any node in B \Xbi .

If v2 ∈ Xci then the pair {ai, ci} is fuzzy and so, Xbi = ∅. Thus V (H) ⊆ A ∪ C, a
contradiction. As a consequence, since v2 ∈ N(ĉi) \ N(âi), v2 = b̂j ∈ Xbj with j 	= i.
Furthermore, v2t /∈ Xai

since otherwise v2tv2 would not be adjacent. Thus v2t = b̂i ∈ Xbi ,
i.e., no pair in {ai, bi, ci} is fuzzy. As b̂i is anticomplete to A\Xai

, H \{v2t−1, v2t, v0, v1}
does not contain any node in A \ Xai

. Since v2t−1 ∈ N(ĉi) \ N(b̂i), v2t−1 = âk ∈ Xak

with k 	= i.
Thus H \ {v2t−1, v2t, v0, v1, v2} is contained in C and consists of at most one node,

contradicting the hypothesis that H has length at least 7. �
It is easy to see that a closed fuzzy Z2-strip G that is a thickening with F = ∅ is a nice

three-cliqued graph and, with a little effort, it can also be proved that the thickening
performed on any admissible set of fuzzy pairs does not increase the stability number
of closed fuzzy Z2-strips. Therefore, by Theorems 26 and 27, the stable set polytopes
of a closed fuzzy Z2-strip and its contraction along the super simplicial edge a0b0 are
described by: nonnegativity and clique-neighbourhood inequalities. In the remainder of
this section, we provide details on the structure of these inequalities.

Theorem 30. Let (G, a0b0) be a closed fuzzy Z2-strip. Then every nontrivial inequality
(β, β0) that is facet defining for STAB(G) (STAB(G/a0b0)) is a rank or a lifted 5-wheel
inequality. Moreover, if βa0 = βb0 > 0 (βz0 > 0, respectively), then (β, β0) is a rank
inequality.

Proof. Since a closed fuzzy Z2-strip is a nice three-cliqued graph, it follows, by Theo-
rem 26 (Theorem 27), that every facet defining inequality for STAB(G) (STAB(G/a0b0),
respectively) is either a nonnegativity or a clique-neighbourhood inequality.
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Since A ∩ B = ∅, the edge a0b0 is super simplicial in G and so, by Theorem 26, ev-
ery facet defining clique-neighbourhood inequality of STAB(G) with coefficients {0, 1, 2}
has zero coefficients on a0 and b0. Therefore, the supporting graph of every clique-
neighbourhood inequality of STAB(G) that is not a rank inequality is a subgraph G′ of
G \ {a0, b0} and so also of G/a0b0.

By Corollary 8, every nontrivial facet defining inequality of STAB(G/a0b0) that is
not a rank inequality is a clique-neighbourhood inequality generated by a nonempty
clique K ⊂ C. Since z0 is C-anticomplete it follows that z0 has coefficient zero in every
clique-neighbourhood inequality of STAB(G/a0b0) with coefficients {0, 1, 2}.

To complete the proof we need to show that every clique-neighbourhood inequality
(β, β0) that is facet defining for STAB(G) (and for STAB(G/a0b0)) and is not a rank
inequality, is a lifted 5-wheel inequality. By Lemma 29, G and G/a0b0 do not contain
any (2t+1)-antiwheel with t � 3. Thus, by Lemma 9, it suffices to show that Gβ [Ñ(K)]
is connected, where K is the clique that generates (β, β0).

Let ĉk ∈ K and let (âi, b̂j , ĉj , âj , b̂r) be a 5-hole contained in Gβ [Ñ(K)] (it exists since
G is claw-free, it does not contain a (2t+ 1)-antiwheel with t � 3, and Gβ [Ñ(K)] is not
bipartite) with i 	= j 	= r and i, j, r different from k. Note that r might coincide with i

in case G is fuzzy and {ai, bi} is a fuzzy pair. Now, in G each node âq ∈ A ∩ ÑGβ
(K),

q 	= i, j is adjacent to b̂j and each node b̂p ∈ B ∩ ÑGβ
(K), p 	= j, r is adjacent to âj .

Moreover each node ĉt ∈ C ∩ ÑGβ
(K), t 	= j, is adjacent in G to at least one node

in (A ∪ B) ∩ ÑGβ
(K), otherwise ĉt is isolated in Gβ [Ñ(K)] and Theorem 6 would be

contradicted. Hence, Gβ [Ñ(K)] is connected and the thesis follows. �
Theorem 30 provides us the following useful information: when performing the

2-clique-bond composition of a closed fuzzy Z2-strip G with another graph, clique-
neighbourhood inequalities of STAB(G) and STAB(G/a0b0) with coefficients {0, 1, 2}
are never involved in even-odd combinations of inequalities. This because the only facet
defining inequalities of STAB(G) that are even are rank inequalities and the only facet
defining inequalities of STAB(G/a0b0) that are odd are rank inequalities as well.

The closed fuzzy Z2-strips are not the only three-cliqued graphs involved in the de-
composition theorem of claw-free graphs. In particular two other types of three-cliqued
graphs are needed to construct fuzzy antihat graphs: closed fuzzy Z3-strips and closed
fuzzy Z4-strips. These three-cliqued graphs are not nice in general and for each of them
we need specific proofs to yield the linear descriptions of their stable set polytope. This
will be discussed in the next two sections.

7. Fuzzy Z3-strips

In [3], fuzzy Z3-strips are defined as follows:

Definition 31. Let H be a graph and let (h1, h2, h3, h4, h5) be a path in H such that h1
and h5 both have degree one in H and every other edge of H is incident with one of
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h2, h3, h4. The graph H ′ obtained from the line graph of H by performing a thickening
on the pair {h2h3, h3h4} or by deleting the edge {h2h3, h3h4} is a fuzzy Z3-strip with
simplicial nodes {h1h2, h4h5}.

An equivalent definition can be given directly without producing H ′ as a thickening
of the line graph of an original graph H.

Definition 32. Let G∗ be a three-cliqued strip (A∗, B∗, C∗, a0, b0) where the following
conditions hold:

1) A∗ = {z1, a1, a2, . . . , an}, B∗ = {z2, b1, b2, . . . , bn}, and C∗ = {c1, c2, . . . , cn} are
three pairwise disjoint cliques;

2) for 1 � i, j � n, aibj , aicj , bicj ∈ E(G∗) if and only if i = j;
3) z1 is (A∗ ∪ {a0} ∪ C∗)-complete and (B∗ ∪ {b0})-anticomplete; z2 is (B∗ ∪ {b0} ∪

C∗)-complete and (A∗ ∪ {a0})-anticomplete; z1z2 ∈ E(G∗).

A fuzzy Z3-strip (A,B,C, a0, b0) is obtained from G∗ by deleting a (possibly empty) set
of nodes Y ⊆ A∗∪B∗∪C∗ \{z1, z2} such that A = A∗ \Y , B = B∗ \Y , and C = C∗ \Y
and by performing a thickening on a set F containing the pair {z1, z2} and possibly the
following pairs:

– {ai, ci}, with bi ∈ Y ;
– {bi, ci}, with ai ∈ Y ;
– {ai, bi}, with either ci ∈ Y or C = {ci}.

It can be verified that the fuzzy Z3-strip as defined in Definition 32 is equivalent to
the thickening of a Z3-strip (H,h1h2, h4h5) as defined in Definition 31 provided that the
thickening of Chudnovsky and Seymour is modified as in Definition 21.

In the following, we say that a (closed/contracted closed) fuzzy Z3-strip G contains
an ab-pair {ai, bi} if ai, bi ∈ V (G) and ci ∈ Y , an ac-pair {ai, ci} if ai, ci ∈ V (G) and
bi ∈ Y , a bc-pair {bi, ci} if bi, ci ∈ V (G) and ai ∈ Y . Moreover, if ai, bi, ci ∈ V (G) for
some index i, we say that G contains a complete triple, while, if ci ∈ V (G) and ai, bi ∈ Y ,
we say that G contains a c-singleton. According to Definition 20, each of the above pairs
is fuzzy. In the following, when we say that G contains, say, an ab-pair {ai, bi} for some i,
we mean that G contains the thickening (Xai

, Xbi) of that pair (if any). The same apply
to bc-pairs, ac-pairs, and the complete triple {ai, bi, ci} when C = {ci} according to
Definition 32.

In Fig. 4 we depict two examples of Z3-strip: (a) shows a Z3-strip with one complete
triple, one ab-pair and a c-singleton; (b) shows a Z3-strip with two complete triples. The
dashed bold edges represent fuzzy pairs, while the grey areas emphasize the three cliques
A, B, and C.
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Fig. 4. Z3-strips.

In the following we study the facet defining inequalities of STAB(G) and STAB(G/

a0b0) where G is a closed fuzzy Z3-strip with a super simplicial edge a0b0. A number
of preliminary observations can be made to specify which subgraphs of a closed fuzzy
Z3-strip can support a nontrivial facet defining inequality.

Observation 33. Let G = (A,B,C, a0b0) be a closed fuzzy Z3-strip and let Y be as
in Definition 32. If Y contains a pair of nodes {bi, ci} (or {ai, ci}), then the node ai
(bi respectively) is simplicial in G, as it belongs only to the clique A ∪ {a0} (B ∪ {b0}
respectively). By ii) of Corollary 14, the associated clique inequality is the only nontrivial
facet defining inequality for STAB(G) with nonzero coefficient on ai (bi). Analogous
result holds for G/a0b0 with the cliques A ∪ {z0} and B ∪ {z0}.

Based on the previous observation, we restrict our attention to nontrivial facet defining
inequalities (β, β0) with the following property: if ai ∈ V (Gβ) then V (Gβ) ∩ {bi, ci} 	= ∅
and if bi ∈ V (Gβ) then V (Gβ) ∩ {ai, ci} 	= ∅.

Observation 34. Let G = (A,B,C, a0b0) be a closed fuzzy Z3-strip. If ci and ck are
c-singletons, then ci and ck are twins in G and in G/a0b0.

As twins always have the same coefficient in every facet defining inequality, hereafter
we consider only nontrivial facet defining inequalities whose supporting graph contains
at most one c-singleton.

Lemma 35. Let G = (A,B,C, a0b0) be a closed fuzzy Z3-strip. If G does not contain any
complete triple, then G and G/a0b0 are fuzzy line graphs.

Proof. Let H = (A,B,C, x0, y0) denote the fuzzy Z3-strip obtained from G − a0b0 by
renaming the nodes a0 and b0 as x0 and y0, respectively.

Consider now the fuzzy Z3-strip H ′ = (A′, B′, C, x1, x2) obtained from H by removing
the nodes of A and B that form ab-pairs and adding two nodes x1 and x2 that are twins
of x0 and y0, respectively.
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Fig. 5. The two strips H′ and H′′ of the proof of Lemma 35.

We show that (H ′, x1, x2) is a fuzzy linear interval strip. We partition the set C into
three sets: CA, CB and CZ , where CA and CB contains exactly the nodes of C that are
adjacent to some nodes in A′ \Xz1 and B′ \Xz2 , respectively, and CZ = C \ (CA ∪CB)
(see Fig. 5).

Then consider the mapping φ from V (H ′) to the points l0, l1, . . . , l10 of a line L

(ordered from left to right) such that: φ−1(l0) = x1, φ−1(l1) = x0, φ−1(l2) = A′ \Xz1 ,
φ−1(l3) = Xz1 , φ−1(l4) = CA, φ−1(l5) = CZ , φ−1(l6) = CB , φ−1(l7) = Xz2 , φ−1(l8) =
B′ \ Xz2 , φ−1(l9) = y0, φ−1(l10) = x2, and the intervals: I1 = [l0, l3 + ε], I2 = [l2, l4],
I3 = [l3, l7], I4 = [l6, l8], I5 = [l7 − ε, l10], where ε is an opportunely small value and the
intervals I2, I3, I4 are fuzzy (according to Definition 10).

To obtain H it suffices to perform a strip composition between (H ′, x1, x2) and a fuzzy
linear interval strip (H ′′, y1, y2) consisting of a unique fuzzy interval with endpoints A\A′

and B \B′ depicted in Fig. 5.
According to Observation 1, G and G/a0b0 are obtained as strip compositions of

(H,x0, y0) with the 4-path {x′
0, a0, b0, y

′
0} and the 3-path {x′

0, z0, y
′
0}, respectively. Thus,

G and G/a0b0 are fuzzy line. �
The next lemmas specify the structure of the supporting graph of nontrivial facet

defining inequalities of STAB(G/a0b0).

Lemma 36. Let G = (A,B,C, a0b0) be a closed fuzzy Z3-strip. Let (β, β0) be a nontrivial
facet defining inequality of STAB(G/a0b0) that is not a rank inequality. If Gβ does not
contain twins, then one of the following cases occurs:

1. Gβ \ (Xz1 ∪Xz2 ∪ {z0}) consists of two complete triples, no pairs, and at most one
c-singleton;

2. Gβ \ (Xz1 ∪Xz2 ∪ {z0}) consists of one complete triple, one pair, and at most one
c-singleton;
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3. Gβ \ (Xz1 ∪ Xz2 ∪ {z0}) consists of one complete triple, no pairs, and at most one
c-singleton;

4. Gβ \ (Xz1 ∪Xz2 ∪ {z0}) consists of one complete triple, one ac-pair, one bc-pair, no
ab-pair, and at most one c-singleton.

Proof. Let Aβ = A ∩ V (Gβ) and Bβ = B ∩ V (Gβ). By Lemma 3, there exists a stable
set S missing the clique Aβ ∪ {z0}. Thus every node ai ∈ Aβ \Xz1 must be adjacent to
at least one node in S ∩ {bi, ci} since otherwise S ∪ {ai} would violate (β, β0). As B ∪C

contains at most two nonadjacent nodes, it follows that |V (Gβ) ∩ (Aβ \Xz1)| � 2.
By using a tight stable set S missing the clique Bβ ∪ {z0}, it can be proved that

|V (Gβ)∩(Bβ \Xz2)| � 2. If Gβ does not contain any complete triple, then, by Lemma 35
and Theorem 11, (β, β0) is a rank inequality, a contradiction. Hence, Gβ contains at
least one complete triple and, by Observation 34, Gβ contains at most one c-singleton.
Finally, by Observation 33, it follows that all feasible configurations are those listed in
the thesis. �
Lemma 37. Let G = (A,B,C, a0b0) be a closed fuzzy Z3-strip. Then every nontrivial
inequality (β, β0) that is facet defining for STAB(G/a0b0) is either a rank or a lifted
5-wheel inequality. Moreover, if βz0 > 0, then (β, β0) is a rank inequality.

Proof. We may assume that (β, β0) does not contain twins and every homogeneous pair
in Gβ is canonical. According to Lemma 36 we distinguish four cases.

Case 1: Gβ \ (Xz1 ∪Xz2 ∪ {z0}) consists of two complete triples {ai, bi, ci}, i = 1, 2,
no pairs, and at most one c-singleton c3.

If c3 /∈ V (Gβ), then consider the mapping φ : V (Gβ) → V (G′
β) defined as follows:

• V (Gβ) = {z0, a1, c1, b1, a2, c2, b2, z1, z2};
• V (G′

β) = {z′0, a′1, c′2, b′1, a′2, c′1, b′2, a′3, b′3};
• φ(ai) = a′i, φ(bi) = b′i, for i = 1, 2, φ(z0) = z′0, φ(z1) = a′3, and φ(z2) = b′3, φ(c1) = c′2,

φ(c2) = c′1.

Note that, since c′3 /∈ V (G′
β), the pair {a′3, b′3} is fuzzy and a thickening of this pair can

be always performed in G′
β as well as on the pair {z1, z2} in Gβ . Thus Gβ is isomorphic

to a closed fuzzy Z2-strip G′
β and, by Theorem 30, we are done, as (β, β0) is either a

rank or a lifted 5-wheel inequality; moreover, in the latter case, βz0 = 0.
Suppose now that c3 ∈ V (Gβ) and that (β, β0) is not a rank inequality. First observe

that V (Gβ) ∩Xzi 	= ∅, i = 1, 2, since otherwise c3 would be simplicial in Gβ and (β, β0)
would be a clique inequality by (ii) of Corollary 14, contradicting the hypothesis. Then,
since α(Gβ \ {c3}) = 2, we consider the rank inequality (γ, 2) defined as

∑
v∈V ′ xv � 2

where V ′ = V (Gβ)\{c3}. By Lemma 3, there exists a tight stable set S for (β, β0) that is
not tight for (γ, 2); then S = {c3, z0}, thus implying βz0 > βu for any u ∈ {a1, a2, b1, b2}.
Now let S′ be a tight stable set of (β, β0) missing the clique A ∪ {z0}; S′ ∩ {b1, b2} = ∅



JID:YJCTB AID:2841 /FLA [m1L; v 1.129; Prn:12/03/2014; 10:18] P.23 (1-31)
A. Galluccio et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 23
otherwise S′ \ {b1, b2} ∪ {z0} would violate (β, β0). Hence, z1
2 ∈ S′ and S′ ∪ {a1} and

S′ ∪ {a2} are stable sets that violate (β, β0). A contradiction.
Case 2: Gβ \ (Xz1 ∪Xz2 ∪ {z0}) consists of one complete triple {a1, b1, c1}, one pair,

and at most one c-singleton c3.
Suppose that (β, β0) is not a rank inequality. Then we distinguish two nonsymmetric

subcases according with the type of pair contained in Gβ .
Subcase 2a): Gβ contains an ab-pair {a2, b2}.
Let (Xa2 , Xb2) be a canonical homogeneous pair of cliques contained in Gβ with

Xa2 = {a1
2, . . . , a

n
2} and Xb2 = {b12, . . . , bm2 }. Then an2 b

1
2 ∈ E(Gβ), since otherwise no

stable set tight for (β, β0) would miss the clique inequality on A ∪ {z0}. Symmetrically,
a1
2b

m
2 ∈ E(Gβ). Thus n = m by Lemma 24. Let (Xz1 , Xz2) be a canonical homogeneous

pair of cliques contained in Gβ and let S′ be a tight stable set missing the clique A∪{z0}.
Then S′ = {b12, c1} and so, βc1 � βz1

1
and βc1 � βc3 + βa1 .

Consider the set U = {a1, b1, c1, z0, b
1
2}∪Xz1∪Xz2∪Xa2 and observe that α(G[U ]) = 2.

As a consequence, the rank inequality (γ, 2), whose support is G[U ], is valid for
STAB(G/a0b0). As (β, β0) is not a rank inequality, there exists a stable set S that
is tight for (β, β0) and not for (γ, 2), by Lemma 3. Then S = {c3, z0} (if m = n = 1)
or S ∈ {{c3, z0}, {c3, ai2, bj2}, {c3, a1, b

j
2}, {z1

1 , b
j
2}} for some i, j > 1 with ai2b

j
2 /∈ E(G)

(if m = n > 1). If S ∈ {{c3, z0}, {c3, ai2, bj2}}, then S \ {c3} ∪ {c1} violates (β, β0),
contradiction. If S ∈ {{c3, a1, b

j
2}, {z1

1 , b
j
2}}, then S can be augmented by first replacing

{c3, a1} or {z1
1} with c1 and then adding the node an2 , so violating (β, β0), contradiction.

Subcase 2b): Gβ contains an ac-pair {a2, c2}.
Let (Xa2 , Xc2) be a canonical homogeneous pair of cliques contained in Gβ with

Xa2 = {a1
2, . . . , a

p
2} and Xc2 = {c12, . . . , cq2}. Consider a stable set S that is tight for (β, β0)

and misses the clique A ∪ {z0}. Then S = {c12, b1} and, consequently, βb1 � βz0 , βa1 and
βc12

� βc3 +βa1
2
. Moreover, c12a

p
2 ∈ E(G) and therefore, if cj2 ∈ V (Gβ) for some 1 < j � q,

then there exists ai2 ∈ V (Gβ) with 1 � i � p such that ai2c
j
2 /∈ E(G) (otherwise c12 and

cj2 would be twins).
Consider the set U = {z0, a1, b1, c1, c

1
2}∪Xz1∪Xz2∪Xa2 and observe that α(G[U ]) = 2.

As a consequence, the rank inequality (γ, 2), whose support is G[U ], is valid for
STAB(G/a0b0). As (β, β0) is not a rank inequality, there exists a stable set S′ that is
tight for (β, β0) and not for (γ, 2), by Lemma 3. Therefore, either S′ ∈ {{cj2, a1}, {cj2, z0}}
(if c3 /∈ V (Gβ)) or S′ ∈ {{cj2, a1}, {cj2, z0}, {c3, z0}, {c3, a1}} (if c3 ∈ V (Gβ)), for some
1 < j � q.

But then, either S′ \ {a1, z0} ∪ {b1, ai2} with 1 � i � p or S′ \ {c3} ∪ {c12} (if c3 ∈ S′)
violates (β, β0), a contradiction.

Case 3: Gβ \ (Xz1 ∪Xz2 ∪ {z0}) consists of one complete triple {a1, b1, c1}, no pairs,
and at most one c-singleton c3.

In this case, we can use the same mapping φ of Case 1 to show that Gβ is isomorphic
to a Z2-strip G′ and, by Theorem 30, the thesis follows.

Case 4: Gβ \ (Xz1 ∪Xz2 ∪{z0}) consists of one complete triple {a1, b1, c1}, one ac-pair
{a2, c2}, one bc-pair {b3, c3}, no ab-pair, and at most one c-singleton.
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Since Gβ is not a clique, there exists a stable set S missing the clique A ∪ {z0}; then
c2 ∈ S, otherwise S ∪ {a2} violates (β, β0), and b1 ∈ S, otherwise S ∪ {a1} violates
(β, β0). As S \ {b1} ∪ {a1, b3} is a stable set, βb1 > βa1 . Symmetrically, let S′ be a tight
stable set missing the clique B ∪ {z0}, then c3 ∈ S′, otherwise S′ ∪ {b3} violates (β, β0),
and a1 ∈ S′, otherwise S′ ∪ {b1} violates (β, β0). As S′ \ {a1} ∪ {b1, a2} is a stable
set, βa1 > βb1 . A contradiction. It is not difficult to check that this proof still works if
thickening operations are performed on the pairs {a2, c2} and {b3, c3}. �

We can now state the final result for closed fuzzy Z3-strips.

Theorem 38. Let G = (A,B,C, a0b0) be a closed fuzzy Z3-strip. Then every nontrivial
inequality (β, β0) that is facet defining for STAB(G) (STAB(G/a0b0)) is a rank or a
lifted 5-wheel inequality. Moreover, if βa0 = βb0 > 0 (βz0 > 0, respectively), then (β, β0)
is a rank inequality.

Proof. As usual, we assume that Gβ does not contain twins. By Lemma 35, we may
assume that Gβ contains at least one complete triple, say {a1, b1, c1}, since otherwise Gβ

is fuzzy line and so, it supports a rank inequality by Theorem 11. The proof consists of
three cases.

Case 1: (β, β0) is facet defining for STAB(G) and βa0 = βb0 > 0.
Let S be a tight stable set for (β, β0) missing the clique A ∪ {a0} (it must exists by

Lemma 3). Then b0 ∈ S, otherwise S ∪ {a0} violates (β, β0). Then c1 ∈ S otherwise
S ∪ {a1} would violate (β, β0). If Gβ contains a triple {a2, b2, c2}, or an ab-pair {a3b3},
or an ac-pair {a4, c4} then S∪{a2}, or S∪{a3}, or S∪{a4}, respectively, violates (β, β0).
A contradiction.

Symmetric arguments prove that Gβ contains no bc-pair. Since, by Observation 34, Gβ

contains at most one c-singleton, the same mapping used to prove Case 1 of Lemma 37
(with simply φ(z0) = z′0 replaced by φ(a0) = a′0 and φ(b0) = b′0) can be used to show
that Gβ is isomorphic to a closed fuzzy Z2-strip. Thus the thesis follows by Theorem 30.

Case 2: (β, β0) is facet defining for STAB(G/a0b0).
The thesis follows from Lemma 37.
Case 3: (β, β0) is facet defining for STAB(G) and βa0 = βb0 = 0.
The inequality (β, β0) is also facet defining for STAB((G/a0b0) \ {z0}). Hence, the

inequality (β′, β0) obtained from (β, β0) by lifting the node z0 is facet defining for
STAB(G/a0b0). By Lemma 37, (β′, β0) is either a lifted 5-wheel inequality and βz0 = 0,
or a rank inequality and βz0 ∈ {0, 1}. Hence (β, β0) satisfies the thesis. �
8. Fuzzy Z4-strips

The last three-cliqued strip to be considered in the decomposition of claw-free graphs
with large stability number was named Z4-strip in [3] and defined as follows:
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Fig. 6. A Z4-strip (A,B,C, a0, b0). The dashed bold edges represent fuzzy pairs, while the grey areas em-
phasize the three cliques A, B, and C.

Definition 39. A three-cliqued strip (A,B,C, a0, b0) is a Z4-strip if adjacencies are as
follows:

1) A = {a1, a2}, B = {b1, b2, b3} and C = {c1, c2} are three pairwise disjoint cliques;
2) {a2, c1, c2}, {a1, b1, c2} are cliques; b2c1, b2c2, and b3c1 are edges.

A Z4-strip is fuzzy if and only if a thickening has been performed on at least one of the
following pairs: {b2, c2} and {b3, c1} (see Fig. 6).

As usual, we denote by z0 the node of G/a0b0 obtained by contracting a0b0.

Lemma 40. Let G = (A,B,C, a0b0) be a closed fuzzy Z4-strip. If G does not contain an
induced 5-wheel, then G is fuzzy line. The same holds for G/a0b0.

Proof. The 5-wheels in G or G/a0b0 are all of type (ci2 : a1, a2, c
h
1 , b

j
2, b1) where i, j, h � 1

and ci2b
j
2 ∈ E(G). So we consider all the cases when G and G/a0b0 contain none of the

above 5-wheels. Let us denote by H = (A,B,C, x0, y0) the fuzzy Z4-strip obtained from
G− a0b0 by renaming the nodes a0 and b0 as x0 and y0, respectively.

According to Observation 1, G and G/a0b0 are obtained as strip compositions of
(H,x0, y0) with the 4-path {x′

0, a0, b0, y
′
0} and the 3-path {x′

0, z0, y
′
0}, respectively. More-

over, as a0b0 is super simplicial, G (G/a0b0) contains a 5-wheel if and only if H contains
a 5-wheel. Hence, it is sufficient to prove that if H does not contain a 5-wheel, then H

is fuzzy line.
If H does not contain a1 then H is a fuzzy linear interval strip. Indeed a map from

V (H) to the points l0, l1, l2, l3, l4 of a line L (ordered from left to right) is the following:
φ(x0) = l0, φ(a2) = l1, φ(Xc1) = φ(Xc2) = l2, φ(b1) = φ(Xb2) = φ(Xb3) = l3, φ(y0) = l4,
and the intervals are: I1 = [l0, l1 + ε], I2 = [l1, l2 + ε], I3 = [l2, l3], I4 = [l3 − ε, l4], where
ε is a suitably small value and the interval I3 is fuzzy (according to Definition 10).

Similar maps can be found when H does not contain any node in Xc1 or H does not
contain b1.

If H does not contain a2 then it is obtained as a strip composition of the following
strips: (H1, x1, x2) with node set {x0, x1, a1, x2, y0} ∪Xc2 ∪Xb2 ∪Xc1 ∪Xb3 depicted in
Fig. 7 (a) and the strip consisting of the 3-node path {y1, b1, y2}.
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Fig. 7. Fuzzy Z4-strips without node a2 (a) or node c2 (b) are compositions of fuzzy linear interval strips.

Fig. 8. Fuzzy Z4-strips without node b2 can be obtained by two subsequent strip compositions (a) and (b).

If H does not contain any node x ∈ Xc2 then the strip composition is depicted
in Fig. 7 (b).

If H does not contain any node x ∈ Xb2 then H has the decomposition depicted
in Fig. 8.

Finally, consider the case where ci2b
j
2 /∈ E for any ci2 ∈ Xc2 and bj2 ∈ Xb2 . Then a

decomposition similar to the one depicted in Fig. 8 holds with b2 added and adjacent to
c1, b3 and y2. This completes the proof. �
Theorem 41. Let G = (A,B,C, a0b0) be a closed fuzzy Z4-strip. Then every nontrivial
inequality (β, β0) that is facet defining for STAB(G) (STAB(G/a0b0)) is a rank or a
lifted 5-wheel inequality. Moreover, if βa0 = βb0 > 0 (βz0 > 0, respectively), then (β, β0)
is a rank inequality.

Proof. Suppose conversely that (β, β0) is neither a rank nor a lifted 5-wheel inequality.
As usual, we assume that Gβ does not contain twins and every homogeneous pair in Gβ

is canonical.
If Gβ does not contain a 5-wheel then, by Lemma 40 and Theorem 11, (β, β0) is a

rank inequality, a contradiction. So, we may assume, without loss of generality, that
a1, a2, c

1
1, c

1
2, b1, b

1
2 ∈ V (Gβ).
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Observe that if Xb3 ∩ V (Gβ) = ∅ then Gβ is isomorphic to a closed fuzzy Z2-strip
(it suffices to rename a2 as a3) and the thesis follows from Theorem 30.

Hence, Xb3 ∩ V (Gβ) 	= ∅, i.e., |Xb3 ∩ V (Gβ)| = m � 1.
First observe that bm3 c11 ∈ E otherwise bm3 would be simplicial in Gβ , contradicting ii)

of Corollary 14. Now, when m = 1, Gβ is still isomorphic to a closed fuzzy Z2-strip (it suf-
fices to rename a2 as a3 and put b13 into Xb2) and the thesis follows from Theorem 30.
So, we assume that m > 1.

To complete the proof we consider three cases for (β, β0) each of which yields a
contradiction:

Case 1: (β, β0) is facet defining for STAB(G) and βa0 = βb0 > 0.
Let S be a tight stable set of (β, β0) missing the clique B ∪ {b0}. Clearly a0 ∈ S

otherwise S∪{b0} violates (β, β0). Then S∩C 	= ∅. If S∩Xc2 	= ∅ then S∪{b13} violates
(β, β0), a contradiction. If S ∩Xc1 	= ∅ then S ∪ {b1} violates (β, β0), a contradiction.

Case 2: (β, β0) is facet defining for STAB(G/a0b0).
By Lemma 24, the nodes of Xc1 and Xb3 can be ordered so that nodes with smaller

index have more neighbours and, by Proposition 4, we have that: βc11
� βc21

� · · · � βcn1 ,
and βb13

� βb23
� · · · � βbm3 , where |n −m| � 1. An analogous assumption can be made

for Xc2 and Xb2 .
Consider the 5-hole H = (a1, a2, c

1
1, b

1
2, b1) and the inequality (γ, 2) supported by H

plus the nodes (Xb2 \ {b12}) ∪Xb3 ∪Xc2 ∪ {z0} lifted according to the following order:

b22, b
3
2, . . . , b

p
2, b13, b

2
3, . . . , b

m
3 , c12, c

2
2, . . . , c

q
2, z0 (4)

where p = |Xb2 | and q = |Xc2 |. All the above nodes receive lifting coefficient 1 according
to formula (1). Indeed, when lifting nodes u ∈ (Xb2 \ {b12}) ∪Xb3 , observe that {a1} is
a maximum stable set of Gγ \ N [u]; when lifting nodes v ∈ Xc2 , {b13} is a maximum
stable set of Gγ \ N [v]; and when lifting the node z0, {c11} is a maximum stable set
of Gγ \ N [z0]. Lastly, the nodes u ∈ Xc1 \ {c11} are lifted with zero coefficient because
{a1, b

m
3 } is a maximum stable set of Gγ \N [u].

Let S′ be a stable set that is tight for (β, β0) and is not tight for (γ, 2). S′ is {cj1, b1}
or {cj1, z0} for some j > 1 (because {cj1, a1} is augmentable with bm3 ). Since both sets
S′ \ {b1} ∪ {a1, b

m
3 } and S′ \ {z0} ∪ {a1, b

m
3 } are stable, βb1 > βa1 or βz0 > βa1 .

Let S′′ be a tight stable set of (β, β0) missing B ∪ {z0}. If a2 ∈ S′′ then S′′ ∪ {b}
violates (β, β0) for any b ∈ B, a contradiction. If a1 /∈ S′′ then c2 ∈ S′′ and S′′ ∪ {b13}
violates (β, β0), contradiction. Then a1 ∈ S′′ and S′′ = {a1, c

1
1}. Since S′′ \ {a1} ∪ {b1}

and S′′ \ {a1} ∪ {z0} are stable sets, βa1 � βb1 and βa1 � βz0 , a contradiction.
Case 3: (β, β0) is facet defining for STAB(G) and βa0 = βb0 = 0.
The inequality (β, β0) is also facet defining for STAB((G/a0b0) \ {z0}). Hence, the

inequality (β′, β0) obtained from (β, β0) by lifting the node z0 is facet defining for
STAB(G/a0b0). By Case 2, (β′, β0) is either a lifted 5-wheel inequality and βz0 = 0,
or a rank inequality and βz0 ∈ {0, 1}. Hence (β, β0) satisfies the thesis. �



JID:YJCTB AID:2841 /FLA [m1L; v 1.129; Prn:12/03/2014; 10:18] P.28 (1-31)
28 A. Galluccio et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–•••
9. The stable set polytope of fuzzy antihat graphs

The structure theorem for claw-free graphs of Chudnovsky and Seymour [3] states
that a claw-free graph without 1-join and with stability number at least four is either a
striped graph or a fuzzy circular interval graph.

The defining linear system of the stable set polytope of a graph G containing a clique-
cutset is the union of the linear systems defining the stable set polytopes of the two
graphs composing G (this follows from Theorem 13). Since in claw-free graphs a 1-join
gives rise to a clique-cutset, the study of the linear description of the stable set polytope
of claw-free graphs can be restricted to claw-free graphs that do not admit 1-joins. Thus,
a complete linear description of the stable set polytope of claw-free graphs is available as
soon as we know an explicit linear description of STAB(G) when G is striped, or fuzzy
circular interval or G has stability number less than or equal to 3. In this section, we
study the facial structure of the stable set polytope of a large subclass of striped graphs:
the fuzzy antihat graphs.

To maintain the analogy with the notation in [3], we denote by Zi the set of closed
fuzzy Zi-strips for i = 2, 3, 4. Moreover, a0b0 will always indicate the super simplicial
edge of a closed fuzzy Zi-strip according to Definitions 28, 32, and 39.

Definition 42. A fuzzy antihat graph is a graph obtained from a fuzzy line graph H by
iteratively performing 2-clique-bond compositions of closed fuzzy strips Ti belonging to
Z2 ∪ Z3 ∪ Z4 along pairs (ui, vi) and (ai0, bi0) such that: ΓH = {ei = uivi, i = 1, . . . , k}
is a set of pairwise non-incident super simplicial edges of H and fi = ai0b

i
0 is the super

simplicial edge of Ti for i = 1, . . . , k.

We say that a graph is W-perfect if its stable set polytope is described by: nonnegativ-
ity, rank, and lifted 5-wheel inequalities. The next theorem shows that the 2-clique-bond
composition preserves the W-perfectness provided that the closed strips used in the
composition belong to Z2 ∪ Z3 ∪ Z4.

Theorem 43. Let G be a graph obtained as the 2-clique-bond composition of a claw-free
graph H and a closed fuzzy strip Z belonging to Z2 ∪ Z3 ∪ Z4, along pairs (u, v) and
(a0, b0) such that f = uv is a super simplicial edge of H and e = a0b0 a super simplicial
edge of Z.

If H and H/f are W-perfect, then G is W-perfect.

Proof. Let ze (zf ) denote the node resulting from the contraction of the edge e (f , re-
spectively). By Theorem 18, STAB(G) is described by the following inequalities:

i) nonnegativity inequalities;
ii) clique inequalities;
iii) facet defining inequalities of STAB(H) with zero coefficients on the endnodes of f ;
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iv) facet defining inequalities of STAB(Z) with zero coefficients on the endnodes of e;
v) even-odd combinations of facet defining inequalities of STAB(H) and STAB(Z/e);
vi) even-odd combinations of facet defining inequalities of STAB(H/f) and STAB(Z).

By hypothesis, STAB(H) and STAB(H/f) are described by nonnegativity, rank, and
lifted 5-wheel inequalities. Since f is super simplicial and H is claw-free, it follows from
Corollary 8 that the only inequalities of STAB(H) and STAB(H/f) having nonzero
coefficients on the endnodes of f and on zf (those involved into even-odd combinations)
are rank inequalities.

By Theorems 30, 38, 41, STAB(Z) and STAB(Z/e) are described only by nonnegativ-
ity, rank, and lifted 5-wheel inequalities. Moreover, only rank inequalities have nonzero
coefficients on both endnodes of e in STAB(Z) and on the node ze in STAB(Z/e). This
implies, by Lemma 19, that the even-odd combinations v) and vi) resulting from the
2-clique-bond composition of H and Z are rank inequalities and the theorem follows. �

We can now state the main result of this paper:

Theorem 44. Let G be a fuzzy antihat graph. Then STAB(G) is described by the following
inequalities:

• nonnegativity inequalities,
• rank inequalities,
• lifted 5-wheel inequalities.

Proof. According to Definition 42, let Hk be a fuzzy antihat graph, i.e., a graph obtained
from a fuzzy line graph H by k applications of the 2-clique-bond composition with graphs
Ti ∈ Z2∪Z3∪Z4, i = 1, . . . , k along pairs (ai, bi) and (ui, vi) such that: ΓH = {ei = aibi,

i = 1, . . . , k} is a set of pairwise non-incident super simplicial edges of H and fi = uivi
is a super simplicial edge of Ti for i = 1, . . . , k.

First observe that the class of fuzzy line graphs is closed under contraction of super
simplicial edges; indeed, H/e is obtained by composing the fuzzy line strip (H−e, v1, v2)
with the strip (P, a0, b0) where P is the path (a0, z0, b0). Thus, H/F is fuzzy line for any
set F ⊆ ΓH .

The proof is by induction on k.
If k = 1 then H1 is W-perfect by Theorem 43. Then we assume that k > 1 and Hk is

the 2-clique-bond composition of Hk−1 and Tk along (ak, bk) and (uk, vk).
By Theorem 43, in order to prove that Hk is W-perfect it suffices to show that Hk−1

and Hk−1/ek are W-perfect. Since Hk−1 is W-perfect by inductive hypothesis, it remains
to show that Hk−1/ek is W-perfect.

As the edges {e1, e2, . . . , ek} are pairwise non-incident, the edges {e1, e2, . . . , ek−1}
are super simplicial in H/ek. This implies that the graph Hk−1/ek can be obtained from
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the graph H/ek by k − 1 iterated 2-clique-bond compositions of T1, T2, . . . , Tk−1 along
the pairs (a1, b1), . . . , (ak−1, bk−1).

Since H/ek is fuzzy line, it follows that Hk−1/ek is a fuzzy antihat graph obtained
with k−1 iterations of the 2-clique-bond composition and, by induction, it is W-perfect.
Thus the theorem follows. �

The above theorem together with the characterization of rank facet defining inequal-
ities in [13] provides the minimal defining linear system for the stable set polytope of
fuzzy antihat graphs. Since the polytope STAB(G) is full dimensional, this linear system
is unique.

As explained at the beginning of this section, a complete linear description of the
stable set polytope of claw-free graphs will be available as soon as we know the explicit
linear description of STAB(G) when G is striped, or fuzzy circular interval or G has
stability number less than or equal to 3. Now the only strip that is missed to complete
the construction of striped graphs is the so-called Z5-strip. This strip differs from the
other Zi-strips, i = 1, 2, 3, 4, because it is not three-cliqued. Moreover, the Z5-strip gives
rise to a class of more complicated facet defining inequalities for STAB(G) that have
coefficients {0, 1, 2} and that are different from the lifted 5-wheel inequalities (see [9,10]
for details). We consider this case in a subsequent paper [12] where we complete the
study of the stable set polytope of striped graphs.

If G is fuzzy circular interval, a linear description of STAB(G) has been provided
in [7]. Therefore, to have a complete linear description of STAB(G) when G is claw-free, it
remains to consider the case α(G) = 3. This case seems to be difficult because the defining
linear system of STAB(G), when G has stability number three, contains inequalities with
arbitrarily many different coefficients [26,18].
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