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A B S T R A C T

Aging is a biological process characterized by the progressive functional decline of many interrelated

physiological systems. In particular, aging is associated with the development of a systemic state of low-

grade chronic inflammation (inflammaging), and with progressive deterioration of metabolic function.

Systems biology has helped in identifying the mediators and pathways involved in these phenomena,

mainly through the application of high-throughput screening methods, valued for their molecular

comprehensiveness. Nevertheless, inflammation and metabolic regulation are dynamical processes

whose behavior must be understood at multiple levels of biological organization (molecular, cellular,

organ, and system levels) and on multiple time scales. Mathematical modeling of such behavior, with

incorporation of mechanistic knowledge on interactions between inflammatory and metabolic

mediators, may help in devising nutritional interventions capable of preventing, or ameliorating, the

age-associated functional decline of the corresponding systems.

� 2014 The Authors. Published by Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Aging is a biological process characterized by the progressive
functional decline of many interrelated physiological systems, at
multiple levels of biological organization: molecular, cellular,
tissue or organ, and systems level. In particular, inflammation is
strongly affected by the aging process. Elderly people often present
mildly elevated blood levels of inflammatory mediators, and the
slow development of this state of low-grade, chronic, systemic
inflammation with age has been termed ‘‘inflammaging’’ (Cevenini
et al., 2013; Franceschi et al., 2007, 2000). Some of these mediators
have been identified as risk factors for age-associated diseases,
such as arthritis, sarcopenia, cardiovascular diseases, type II
diabetes, neurodegeneration, many cancers, etc. (Blagosklonny
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and Hall, 2009), and suggested to provide the ‘‘common soil’’ for
development of these diseases (Salvioli et al., 2013). Low-grade
inflammation can be driven by metabolic dysfunction brought
about, for instance, by overnutrition, in which case it has been
referred to as ‘‘metaflammation’’ (Gregor and Hotamisligil, 2011).
Metaflammation includes infiltration of immune cells in metabolic
organs, caused by reaching the expandability limits of these
organs. In addition, both aging and age-related diseases may lead
to loss of ‘‘metabolic flexibility’’, that is, loss of the ability of cells
and tissues to adapt fuel utilization to fuel availability (Storlien
et al., 2004). Lifestyle interventions based on a balanced diet and
adequate amount of physical activity are one of the most successful
strategies for restoring metabolic health (Biagi et al., 2012; Jeffery
and O’Toole, 2013). Therefore, nutritional interventions may be
successful in controlling low-grade inflammation and improving
metabolic flexibility in elderly people.

Though nutrition is a modulator of both aging and metabolic
function, the mechanisms of this modulation are not entirely
understood and most likely depend on a complex interplay of
effects of macro- and micro-nutrients. Still, it would be most
helpful to be able to devise nutritional strategies with predictable
health effects in the elderly, taking into account known personal
. All rights reserved.
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Box 1. Data resources

The need to store the massive amounts of data produced by

high-throughput technologies boosted the development of ad-

hoc designed databases, giving to almost each omics field one

or more reference data banks. Some of these databases are

geared toward keeping comprehensive and quality-controlled

information on each known molecule or gene, while others

focus on archiving and disseminating results from experimen-

tal studies using omics technologies. In the field of genomics,

ENSEMBL (Flicek et al., 2012) and dbSNP (Sherry et al., 2001)

are the main sources of curated information, whereas ArrayEx-

press (Helen Parkinson et al., 2009) and GEO (Barrett et al.,

2013) work as repositories of transcriptomics datasets. Uni-

protKB (The Uniprot Consortium, 2012) is the most compre-

hensive resource of manually annotated protein information,

whereas publicly available datasets of proteomics studies may

be found in the PRIDE database (Vizcaı́no et al., 2013). For

metabolomics, the HMDB database (Wishart et al., 2009) con-

tains detailed information on more than 40,000 human meta-

bolites and small molecules, whereas metabolomics datasets

may be found in MetaboLights (Haug et al., 2013). Biochemical

pathway databases such as KEGG (Kanehisa et al., 2012) and

REACTOME (Matthews et al., 2009) may be used to explore the

biological context and functional roles of these molecules.

Along with these generalist databases, other much more

focused resources have been developed to serve the immu-

nology community (reviewed in (Gardy et al., 2009)). InnateDB

(Breuer et al., 2013), for instance, groups together information

on mediators of the innate immune response in different

mammalian organisms (human, mouse, bovine), providing

manually curated data on immune-related genes, proteins,

and interactions. In addition, the nutritional community has

joined to develop the nutritional phenotype database (dbNP),

which stores different types of omics data (transcriptomics,

metabolomics, proteomics, etc.) and corresponding metadata

from studies with a complex experimental design (e.g. cross-

over) (Van Ommen et al., 2010). This database is being used in

the NU-AGE project to store all data of the human intervention.

Effective sharing of data amongst the scientific community

critically depends on standardization of formats, languages,

and annotation requirements, for which XML-based encod-

ings have been widely adopted. Strict guidelines describing

the ‘‘minimum required information’’ for different kinds of

studies have been proposed, e.g. MIAME or MINSEQE for

microarray and high-throughput sequencing (Brazma, 2009;

Brazma et al., 2001), or MIAPE (Taylor et al., 2007) for proteo-

mics. These guidelines strongly emphasize the requirement of

metadata (‘‘data about the data’’), in order to ensure replica-

bility and proper interpretation of the results. In general,

annotation of omics datasets relies on biomedical ontologies

(e.g. Gene Ontology, for describing genes and gene products),

which establish a formal and structured representation of

biomedical knowledge, facilitating automated querying. The

BioPortal website (http://bioportal.bioontology.org/ontolo-

gies) provides a listing of commonly used biomedical ontol-

ogies, as well as tools for searching and comparing terms

across different ontologies.

Databases hosting massive quantity of information must go

hand in hand with the development of easy and scalable

querying methods. Raw data FTP access is usually granted

to users requesting large datasets, whereas focused requests

can be managed via Web-based interfaces in each database

(e.g. the ENSEMBL genome browser), or application program-

ming interfaces (APIs) relying on REST or SOAP protocols.
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susceptibilities, as well as current health status. Considering the
importance of inflammation in the aging process, inflammatory
biomarkers, possibly in combination with more specific indicators
of metabolic function, can be used as a proxy of health status and
guide the implementation of such strategies.

An important challenge in this endeavor is the fact that
inflammatory mediators are plentiful and heavily intertwined,
forming a complex web of sensors, mediators and effectors for the
inflammatory response, characterized by a high level of redun-
dancy and pleiotropy. Such complexity requires that inflammation
be understood and studied as a system of interacting components,
rather than as a collection of various molecules, each having its
own specific role. Systems biology offers an ideal framework to
accomplish such a task, both in terms of identifying meaningful
components and interactions, as well as in representing, analyzing,
and predicting the behavior of the whole system, also through
development of mathematical and computational models.

The aim of this review is to discuss how systems biology can
help in clarifying and quantifying, on one hand, the relationships
between low-grade inflammation, aging and metabolic flexibility,
and on the other, the impact of nutrition on inflammatory and
metabolic parameters. The models described in this review will be
the basis of the systems biology analyses to be performed in the
framework of the European project NU-AGE. The aim of NU-AGE is
to counteract inflammaging through a whole diet approach and to
acquire measures of putative biomarkers that could be modulated
by diet using omics techniques (for details see the paper from
Santoro et al., 2014). In the next section we summarize what
systems biology is and how it can help in tackling this problem. The
following sections will discuss specific examples of systems
biology approaches (mainly focusing on modeling strategies) to
the understanding of low-grade inflammation and metabolic
flexibility in the context of aging.

2. Systems biology approaches

Systems biology arose as a scientific field in the early 21st
century, propelled by technological advances in both experimental
measurement techniques and available computational power.
These advances allowed scientists to probe biological processes at
the molecular scale in a high-throughput fashion (see Box 1), as
well as store and quantitatively analyze the resulting data,
nowadays collectively referred to as omics data (Hawkins et al.,
2010; Mallick and Kuster, 2010; Portela and Esteller, 2010;
Vinayavekhin et al., 2010). The most common types of omics data
are genomics (analysis of the genome, including epigenetic
modifications), transcriptomics (analysis of RNA levels), proteo-
mics (analysis of protein levels), and metabolomics (characteriza-
tion of metabolite abundance). Omics data can be captured at the
single-cell level (Zong et al., 2012), from body fluids or sets of
circulating blood cells, or at tissue or organ level. The key
advantage of such high-throughput screening is its molecular
comprehensiveness, which provides a rich molecular portrait of
the system, enabling scientific discovery, supplying a large
molecular base for comparisons between experimental conditions
(e.g. healthy and pathological states), and all in all providing
scientists with ample hypotheses for future research. Recent
reviews, by Gardy et al. (2009) and Afacan et al. (2012), discuss the
insights gained from the application of omics technologies in the
fields of innate immunity and nutritional immunology, respec-
tively, as well as important challenges in such applications.

While it is true that high-throughput methods have allowed for
a more comprehensive description of biological phenomena than
ever before, interpretation of the vast amounts of data generated in
a given experiment is almost never straightforward. On one hand,
technology-related issues, such as a low signal-to-noise ratio or the
limited dynamic range of available platforms (especially in
proteomics), require extensive pre-processing of raw data; on
the other, the large number of probed molecules make data
analysis a challenging procedure, the conclusions of which hinge
on proper control of false positives rates and follow-up validation
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studies. Most commonly, exploratory data analyses, such as
principal component analysis (PCA), are first employed for
purposes of dimensionality reduction, whereby the original
variables are recombined into fewer, more meaningful and
uncorrelated variables. A complementary class of approaches
are the ones based on representation of the data as a network,
where each node represents a measured variable (e.g. a protein or
transcript) and an edge between two nodes represents a relation
between variables, derived from either experimental data or prior
biological knowledge (Remondini and Castellani, 2011). These
relations may be quantitative or qualitative: quantitative relations
include, for example, a stoichiometric relation (of an enzymatic
reaction), or the correlation between two variables, measured in a
time series; qualitative relations include possible or known
physical interactions between variables (Frankenstein et al.,
2006). Besides aiding researchers in the visualization and visual
exploration of high-dimensional data, analysis of a network’s
structural properties can reveal the relevance of each node in the
network, allowing for inferences about the effects of node deletion
on network integrity to be made. The network approach gained
momentum in the last few years, as it shifted the emphasis from
single components to relations between components, and from
traditional reductionist approaches to a more holistic perspective
of the system. However, while focusing on interactions between
system components, network analyses usually fall short of
elucidating system behavior, which depends on more than just
the structural properties of the network (Cowan et al., 2012; Lima-
Mendez and van Helden, 2009; Zhou and Nakhleh, 2011).

Indeed, the dynamics of actual mechanistic interactions
between system components are essential for understanding –
as well as reliably predicting – system behavior (Alexander et al.,
2009). Analysis of such dynamics can be accomplished via
mathematical modeling, where the system is characterized by
its state and a temporal evolution rule. The state of the system at a
certain moment in time is defined by the numerical value (e.g.
concentration, number of molecules) of each component at that
[(Fig._1)TD$FIG]
Fig. 1. Diagram showing simplified biological relations (a) and methodological aspect

nutrition and aging. (a) Both nutrition and aging modulate metabolic and inflammatory f

this modulation takes place. Dysregulated ROS production may lead to a loss of metaboli

Mathematical modeling can help in the study of the biological mechanisms involved in

simulation of nutritional interventions, may help in probing the contribution of each me

flexibility and inflammatory imbalance.
moment, and the evolution rule dictates how changes in each
system component quantitatively depend on other system
components. The most widely used formalism for representing
dynamic systems are ordinary differential equations (ODEs), but
other representations may be more appropriate in specific
contexts. In particular, when a continuous approximation of
the system is not possible, due, for example, to low numbers of
participating molecules, formalisms such as the master equation,
agent-based models or Boolean networks may be used; addition-
ally, when one is interested in studying the variability in system
behavior due to stochastic effects, appropriate approaches
include stochastic differential equations, the Fokker–Planck
equation, or the master equation (Van Kampen, 1981). In order
for dynamical modeling to be feasible, mechanistic information
regarding relevant interactions (e.g. ligand–receptor association
constants) must be available. Most often, however, this is not
known for all interactions in a system, and empirical or
approximate relations may need to be used instead. Depending
on the goal of the modeling, it may be appropriate to represent in
great mechanistic detail a certain portion of the system – to study,
for example, the impact of pathological dysregulations that
translate to changes in the associated mechanistic parameters –
whereas other portions of the system could be ‘‘black-boxed’’, that
is, described by laws that do not represent actual mechanisms but
that do agree with empirical observations (see Fig. 1). Further-
more, modeling of a given biological phenomenon may require
consideration of dynamics at very disparate scales, both in time
(e.g. the seconds of biochemical reactions versus the weeks
needed for clearing an infection) and space (the detection of a
pathogen by a single cell versus the system-wide changes in
metabolism caused by the infection). Models at different scales
may be built using different formalisms and used to answer
specific questions (e.g. how a mutation affects the probability of
an interaction), while linking of such models – referred to as
multiscale modeling – should provide insights on emerging
properties, and is one of the frontiers of system biology
s (b) in the study of the modulation of metabolic flexibility and inflammation by

unction in humans, ROS production being one of the possible mechanisms by which

c flexibility, as well as local and systemic imbalances in inflammatory mediators. (b)

these processes, and integration of different types of models, along with in silico

chanism to this modulation and in obtaining or interpreting measures of metabolic
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(Alberghina and Westerhoff, 2005; De Graaf et al., 2009).
Inflammation is a biological system that requires systems
biological methods to fully understand the temporal and spatial
complexity of the responses to all kinds of stressors.

3. Modeling low-grade inflammation in aging

Low-grade, chronic, systemic inflammation, may be defined as a
2- to 3-fold elevation of circulating inflammatory mediators
(Krabbe et al., 2005; Petersen and Pedersen, 2005), usually
associated with the innate arm of the immune system. It is a
state that develops slowly (in contrast to pathological acute
inflammatory responses leading, e.g. to sepsis), and its origin
cannot be easily identified (in contrast to chronic inflammatory
diseases such as rheumatoid arthritis and inflammatory bowel
disease, where additional symptoms identify local dysregulated
inflammation). This makes it difficult to develop appropriate
therapeutic strategies that target both cause and symptom
(inflammation) in a concerted fashion.

In elderly people, the development of this state of low-grade
inflammation has been termed inflammaging (Franceschi et al.,
2007; Licastro et al., 2005), and several studies (though not all)
have identified associations of increased levels of inflammatory
markers with increasing age, frailty, cardiovascular disease, or
mortality in older persons (Alvarez-Rodrı́guez et al., 2012; Forsey
et al., 2003; Fulop et al., 2010; Wikby et al., 2006). These
associations are seen in various biomarkers (Singh and Newman,
2011), the most prominent of which are the cytokines interleukin
(IL)-6, IL-1, and tumor necrosis factor (TNF); their soluble receptors
IL-1 receptor antagonist (IL-1Ra), TNF receptor (TNF-R) and soluble
IL-6 receptor (sIL-6R); the acute phase protein C-reactive protein
(CRP); and total leukocyte count. In centenarians (people older
than 100 years), anti-inflammatory markers, such as IL-10, have
been suggested to play a role in protecting individuals from an
otherwise pro-inflammatory profile (Sansoni et al., 2008). Though
it has been suggested that cytomegalovirus infection could be a
major driver of inflammaging, the evidence for this is conflicting
(Bartlett et al., 2012; Vescovini et al., 2007, 2010).

As an intracellular integrator and regulator of many of the
extracellular signals of inflammation, the NF-kB transcription
factor, along with the members of its signaling pathway (the NF-kB
system), are thought to play a major causative role in inflamma-
ging (Chung et al., 2002; Csiszar et al., 2008; Salminen et al., 2012,
2008). The NF-kB system is composed of a large set of proteins that
regulate inflammatory responses to numerous stimuli (Pahl,
1999), including bacterial products, such as LPS, inflammatory
cytokines, such as IL-1 and TNF (Osborn et al., 1989), and oxidative
stress. Given its prominent involvement in human pathology, the
NF-kB system has been the subject of much experimental study in
molecular and cellular biology. These studies have resulted in an
extensive knowledge of the system components and mechanisms
of signal transduction. Activation of the NF-kB system results in
transcription of over 150 target genes, with subsequent production
of inflammatory mediators such as cytokines, chemokines, and cell
adhesion molecules. Such activation is controlled by three IkB
isoforms (IkBa, -b, and -e), which are constitutively bound to NF-
kB, preventing association with its target genes in the nucleus.
Activation signals cause the IkB kinase (IKK) complex to
phosphorylate the IkB isoforms, which are then readily degraded
(Ghosh et al., 1998), allowing NF-kB to translocate to the nucleus
and bind DNA. While network analyses of the NF-kB interactome
(Tieri et al., 2012) have provided a comprehensive view of the parts
involved, further efforts must be geared toward the quantitative
study of the dynamical behavior that such functional relations
impart to the system, as this will prove crucial for the development
of successful therapeutic strategies.
In this regard, mathematical modeling of NF-kB system
dynamics has played an essential role, both guiding experimental
strategies and highly benefiting from the wealth of experimental
data available (Basak et al., 2012). As Basak et al. (2012) point out,
their concerted experimental and theoretical efforts were initially
undertaken with the purpose of disentangling the differential roles
of the different IkB isoforms in producing the observed temporal
activity profile of NF-kB in response to inflammatory stimuli, as
suggested by biochemical time-course studies. Accordingly, they
enabled the quantitative analysis of known and hypothetical
compensation mechanisms among IkB isoforms, and contributed
to the identification of a late-acting isoform (IkBe), critical for
dampening IkBa-mediated oscillations during long-lasting NF-kB
activity. However, such a concerted approach has generated
insights well beyond the scope of its initial purpose. Model
development itself resulted in revision of literature data regarding
degradation rates of bound and free pools of different IkB proteins,
whereas computational sensitivity analyses revealed that the
distinct degradation rates of these pools constitute a cross-
regulation mechanism contributing to the robustness of the
system response (O’Dea et al., 2007). Mathematical modeling also
suggested that, besides its main function as a transducer of
extracellular signals, the NF-kB system may have the ability to
integrate intracellular available metabolic information into its
response, due to the high IkB protein synthesis required at steady-
state to counteract the proteins’ instability. Such integration of
metabolism and inflammation is now the subject of ongoing
studies (Tornatore et al., 2012). When new experimental data
showed that the IkBd isoform had a long half-life, as compared to
the usual timeframe of NF-kB activity, incorporation of this
information into the model allowed for quantitative assessment of
the effects of prior inflammatory stimulation on the responsive-
ness of the system (i.e. assessment of pre-conditioning effects). It
was found that high IkBd abundance could have tolerizing effects
on inflammatory signaling, allowing IkBd to function as an
integrator of cellular exposure history to inflammatory stimuli,
and a potential target for cross-talk mechanisms with other
developmental functions of NF-kB signaling.

Although the NF-kB system is a central signaling pathway in
inflammation, it is certainly not the only one, and several other
intra- and inter-cellular communication pathways are of rele-
vance for the study of inflammation. Nevertheless, one key aspect
that comes out of the dynamic modeling approach, and that may
be generalized to the study of any system, is that, in addition to the
molecular identity and amplitude of the stimulatory signal, its
temporal characteristics, such as duration or frequency of
stimulation, also play an important role in determining cellular
behavior (Ashall et al., 2009; Behar and Hoffmann, 2010). In the
context of intercellular communication – autocrine and paracrine
signaling – the rate of depletion of cellular receptors in stimulated
versus unstimulated conditions, for example, has been found to
play a major role in determining transient versus persistent
responses to the TGF-b family of ligands (Vilar et al., 2006; Zi et al.,
2011). Cytokines and cytokine families have a prominent role in
the coordination of inflammatory responses, their action often
depending on a host of agonist or antagonist soluble receptors, as
well as on the simultaneous presence of different receptors at the
cell surface. IL-6, for example, belongs to the IL-6 family of
cytokines, which share the common gp130 signaling unit, and is a
cytokine with pleiotropic effects, thought to have both pro- and
anti-inflammatory (or regenerative) properties (Scheller et al.,
2011b). IL-6 signaling requires two types of receptors to be
present at the cell surface: a cognate receptor (gp80), with high
specificity for this cytokine, and the signaling receptor gp130.
These receptors are found in soluble form in plasma, and at the cell
surface, with gp130 widely distributed and gp80 expressed



Box 2. Model resources

For quantitative models of biological processes, the BioMo-

dels and CellML databases are the main available resources.

The BioModels database (Li et al., 2010) currently hosts

142,973 models, the majority of which generated by overlaying

qualitative pathway information with kinetic rate constants

from other databases, in the context of the Path2Models

project. The remainder of the models belong to either the

curated (436) or non-curated (488) branch of the database

(as of May 1st 2013). Similarly, the CellML Project database

(Yu et al., 2011) contains over 500 curated quantitative models,

including models of respiratory and cardiovascular physiolo-

gy, biomechanics and pharmacology, in addition to the mo-

lecular scale models typically found in BioModels.

Quantitative models are most commonly specified in the

SBML (Hucka et al., 2003) standard, with the minimum re-

quired information set by the MIRIAM guidelines and model

annotation relying on the SBO ontology (Le Novère, 2006).

Parameters in quantitative models must be either estimated

from the experiments associated with development of the

model, or gathered from the existing literature or databases.

In particular, for models of inflammatory signaling, protein

interaction data (e.g. dissociation constants) may be especially

relevant. These may be found, among many others, in the

BIND (Bader et al., 2003) or IntAct (Kerrien et al., 2012) data-

bases, which can be jointly queried using the APID or PSIC-

QUIC tools (Aranda et al., 2011; Prieto and De Las Rivas, 2006).

For enzymatic reactions, the SABIO-RK (Wittig et al., 2012) and

BRENDA (Schomburg et al., 2013) databases contain extensive

quantitative information on thousands of kinetic parameters

(e.g. velocity and half-saturation constants). Though these are

valuable resources, kinetic rates obtained from biochemical

assays may only be a rough estimate of in vivo kinetics, and

have not usually been collected for all the reactions considered

in a model (Van Eunen et al., 2010, 2012). In addition to

biochemical kinetics data, quantitative models may need spec-

ification of parameters such as typical cell or protein sizes, half-

lives, diffusion constants, or other biophysical properties. In

this context, the BioNumbers database, containing ‘‘key num-

bers in molecular and cell biology’’ (Milo et al., 2010), is a most

valuable resource, as manual search for these properties is

notably time-consuming. In earlier stages of model building,

more qualitative databases and ‘‘meta-databases’’ of known

and predicted protein–protein interactions, such as the

STRING database (Szklarczyk et al., 2011), may also be helpful

in exploring and identifying potential model components.

As with model definition, sharing of results from model anal-

ysis and simulation also benefits from the use of standardized

formats and ontologies (e.g. the SED-ML and SBRML stan-

dards for describing simulation specifications and results,

respectively, and the KiSAO and TEDDY ontologies for anno-

tation purposes), while model building and simulation may be

done online, using platforms such as JWS Online/OneStop

(Olivier and Snoep, 2004) and VCell (Loew and Schaff, 2001).

While each individual model is aimed at understanding a

specific biological phenomenon, integration of multiple mod-

els could help define a wider biological question and provide

useful insights into the behavior of the corresponding system.

Model interoperability is critical for this type of multiscale

modeling (Bassingthwaighte and Chizeck, 2008), especially

when the scales of the component models are heterogeneous

(e.g. molecules, physiological electrical signals), and is a cen-

tral concern in the ongoing development of simulation plat-

forms (Beard et al., 2012).
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mostly in hepatocytes and immune cells (Garbers et al., 2012).
Thus, IL-6 may signal directly, in cells that express both types of
receptors, or indirectly, in cells that only express gp130, by first
binding the soluble version of gp80 (Rose-John, 2012). This
interplay between soluble and membrane-bound forms of the
receptors may result in a multiphasic IL-6 signal, which is thought
to be involved in the switch from neutrophil to macrophage
infiltration in local inflammatory processes (Scheller et al.,
2011a,b). Therefore, dynamical models of inter-cellular IL-6
signaling may help in understanding the coordination, and
possible mechanisms of dysregulation, of the inflammatory
response. They could be used, for example, to quantify the
relative effects of broken feedback mechanisms versus genetically
determined overproduction of IL-6, in the overall outcome or
temporal profile of an inflammatory response. Again, building this
type of models requires information on molecular interactions
properties, such as physico-chemical association constants (to
both soluble and cellular receptors), measurements of the
distribution of both receptors on different cell types, and data
on the rates of receptor degradation and translocation to the cell
membrane. Additionally, data regarding cytokines that are known
to stimulate or be stimulated or inhibited by IL-6, on the same
time scale as the previous phenomena, may also be necessary. In
other words, the knowledge required for model building comes, in
this case, from heterogeneous experimental sources (e.g. binding
assays, fluorescence microscopy, flow cytometry), as it charac-
terizes heterogeneous interactions between various system
components (see Box 2). This knowledge is, in part, available in
the literature, and further experiments could help in validating
specific hypotheses regarding the missing information.

Combination of inter- and intracellular signaling models could
also prove useful in understanding the influence of signaling
molecules on cellular phenotypes, e.g. M1 and M2 macrophages, or
Th1, Th2, and Th17 T-cells (Busse et al., 2010; Hong et al., 2011;
Mendoza and Pardo, 2010; Santoni et al., 2008), which are usually
defined by a specific set and relative amounts of secreted
mediators, as well as by the set of mediators promoting their
differentiation. In this context, single-cell experimental techniques
may prove useful in refining cellular phenotype classification, by
determining, e.g. if cytokine production by different phenotypes
occurs in a sequential or simultaneous manner (Han et al., 2012).
Joint experimental and mathematical analysis of the relations
between different cellular phenotypes and cell surface distribu-
tions of cytokine receptors is important because the levels of the
corresponding soluble ligands (and any associated agonists or
antagonists) might be tightly adjusted to both, and thus impact
their behavior. Such adjustment could be crucial for the production
of a self-limited, healthy inflammatory response, and dysregula-
tions in overall soluble environment could be conducive to
imbalances in levels of cell surface markers (Valeyev et al., 2010).

It is important to bear in mind that functional motifs (Fu et al.,
2012) may be found at multiple biological levels – intracellular
transcriptional pathways, interactions between soluble ligands
and their receptors or circulating ligands and cell surface
receptors – acting in a coordinated fashion in the interest of
homeostatic balance (Chizzolini et al., 2009). It is almost certain
that similar functional patterns will be found at these different
levels, with different biological parameters proving critical in
each level (Fowler et al., 2012; Rivière et al., 2009). Integration of
such interrelated modules, followed by in silico hypothesis
testing, could help in determining, for example, the comparative
dominance, redundance, robustness, or degree of interdepen-
dence of different signaling pathways, in revealing the most
effective therapeutic targets at different time windows (Clermont
et al., 2010), and also in directing further model development, by
providing criteria for model refinement (Dittrich et al., 2012) or
abstraction, in conjunction with modeling goals. Thus, deposition
of models in public repositories – in such a way that they can be
coupled together and simulated – is a crucial requirement for their
usefulness and translational power (Vodovotz et al., 2008) (see
Box 2).
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4. Modeling metabolic flexibility in aging

Besides inflammation, another important function thought to be
compromised in the elderly is metabolic flexibility (DiPietro, 2010).
Metabolic flexibility is the ability of cells and tissues to switch from a
state of predominant lipid oxidation and high rates of fatty acid
uptake, during fasting conditions, to the suppression of lipid
oxidation and increased glucose uptake, oxidation, and storage,
under insulin-stimulated conditions or after a meal (Galgani et al.,
2008). Following a meal, during the postprandial phase, blood
concentrations of nutrients are high and pancreatic b-cells respond
by releasing insulin into the bloodstream. In myocytes, the pivot for
glucose and fatty acid oxidation, insulin receptors bind insulin,
which results in translocation of glucose receptors to the plasma
membrane, allowing glucose to enter the cell. The rise of nutrients
inside the cell leads to increased levels of citrate in the mitochondria,
which is then displaced to the cytosol, where it stimulates
lipogenesis and inhibits fatty acid oxidation. Metabolism is
consequently shifted toward oxidation of glucose and storage of
fatty acids. During the fasting phase, plasma glucose and insulin
drop, whereas plasma concentration of free fatty acids coming from
adipocytes rises. The energy demand causes a drop in citrate levels,
which results in a shift of metabolism toward oxidation of fatty
acids.

Both overnutrition and differential macronutrient imbalances
may lead to impairment of metabolic flexibility in several ways.
First of all, excess glucose inside the cell results in production of
reactive oxygen species (ROS) and oxidative stress. The ROS
produced lead (among many other effects) to intracellular signals
that stimulate inflammation and inhibit insulin signaling – such as
protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), and p38
mitogen-activated protein kinase (MAPK). In particular, the JNK
stress pathway performs this inhibition by activating FOXOs. In
addition, FOXOs inhibit leptin-induced appetite suppression in the
hypothalamus, impair insulin-induced b-cell proliferation in the
pancreas, and affect mitochondrial biogenesis, which should act
against ROS (Nunn et al., 2009; Ponugoti et al., 2012). Secondly,
overnutrition results in an inability of adipose tissue to deal with
excess lipids, leading to lipid accumulation in ectopic tissues.
Eventually, this accumulation can induce lipotoxicity, as reflected
by the cellular accumulation of long chain fatty acyl-CoA (FA-CoA),
diacylglycerol (DAG), triacylglycerol (TAG) and ceramide. These
lipid species, along with inflammatory cytokines released by
adipose tissue (e.g. TNF-a), ultimately impair insulin signaling, by
increasing serine phosphorylation of the insulin receptor and
reducing the activation of PKB/Akt (Galgani et al., 2008). Finally,
inhibition of insulin signaling due to overnutrition leads to
impaired translocation of GLUT4 during a meal, resulting in an
inability of the cell to shift toward glucose oxidation; conversely,
during the fasting phase, hyperglycemia does not allow the cell to
switch to lipid oxidation.

Loss of metabolic flexibility is often part of a system-wide
dysregulation of metabolism, for instance in type-2 diabetes (T2D)
(Corpeleijn et al., 2009). In this context, the most notable effects
occur in adipose tissue, muscle tissue, and liver, which develop
insulin resistance, and in pancreatic b-cells, which become unable
to produce sufficient insulin. In addition, development of T2D
results in up-regulation of various pro-inflammatory factors (such
as IL-1b, TNF-a, and IL-6, as well as other IL-1 dependent cytokines
and chemokines) and activation of their multifactorial transcrip-
tional pathways (Akash et al., 2013), which further enhance
metabolic dysfunction. Most of these effects occur in different
tissues and are highly interconnected. Thus, studying this in vivo is
a considerable challenge, and, especially in the case of systems
diseases like T2D, modeling approaches can help in understanding
the observable phenotypic changes (Smith et al., 2009) (see Fig. 1).
For instance, in T2D, lower glucose metabolism in pancreatic b-
cells has been observed, which leads to reduced secretion of insulin.
It has been shown that, in physiological conditions, the rate-limiting
step in glucose metabolism is found intracellularly, at the level of
glucokinase (the enzyme performing the conversion of glucose to
glucose-6-phosphate), which is therefore thought to be an impor-
tant factor in reduced insulin secretion. However, it is also known
that in T2D patients, glucose transporter expression in pancreatic b-
cells is reduced, which may also be the cause of lower glucose
metabolism. Modeling can help in testing which factor underlies the
observed dysfunction. In their model of glucose transport in
pancreatic b-cells (Luni et al., 2012) explore the relation between
cell surface levels of the glucose transporters GLUT1 and GLUT2 and
the rate of intracellular conversion of glucose into glucose-6-
phosphate. The authors identify a threshold of receptor expression
below which glucose transport becomes limiting to its intracellular
utilization, and show that the expression level observed in T2D
patients is below this threshold, implying that receptor numbers are
at the basis of reduced insulin secretion. The model includes
regulation of transporter expression at the transcriptional and post-
transcriptional level, which allows the authors to quantitatively
study, by sensitivity analysis, the effects of perturbations in different
components of the system, thus identifying the most sensitive
targets for therapeutic interventions. Extension of this model to
include both fatty acid oxidation and the effects of inflammatory
mediators, or building of an analogous model for muscle or adipose
tissue, could possibly help in identifying important additional points
of control for metabolic flexibility.

A multi-compartment approach by Wattis (2007, online report)
explores the dynamics of metabolic flexibility, by describing
glucose and fatty acid oxidation, and explicitly representing the
dynamic interactions between these processes in muscle and
blood, as well as the bulk of other organs or tissues. The model is
used to study the effects of insulin sensitivity on metabolic
flexibility after a meal. As parameter values are only partially
available, the authors do not present a full comparison to
experimental results. However, their analysis uncovers that insulin
insensitivity can dramatically alter the dynamic behavior of the
proportion of glucose oxidation after a meal (in a time scale of
30 min to 8 h), reducing both the height of the initial peak in
proportion of glucose oxidation and the depth of the subsequent
trough. The authors point out that their results could be compared
to experimental observations measuring both insulin sensitivity
and changes in respiratory quotient (DRQ) from fasting to glucose-
and insulin-stimulated conditions. This is a typical experimental
measure of metabolic flexibility (Galgani and Ravussin, 2008) and
could be compared to the magnitude of the peak-trough difference
in the model. Additionally, further studies of parameter sensitivi-
ties could help in identifying the major processes determining loss
of metabolic flexibility, and possibly direct the refinement of the
model at the molecular scale.

Although metabolic flexibility is a clearly defined concept
(Galgani et al., 2008), with a meaningful translation to experimen-
tal settings, it is nonetheless only a partial measure of the
functional decline that occurs with aging. In a wider context, one
would be interested in quantifying the ability of cells, tissues,
systems and whole organism, to adapt to different kinds of
stressors, and how this ability declines with aging. Such ability has
been termed phenotypic flexibility, and a similar concept has
recently been proposed as a definition for health (Huber et al.,
2011). Studying the ability of an individual to adapt to a stressor is
often done using ‘‘challenge tests’’ and retrieving time resolved
data on the response. Several challenges have been developed and
are extensively studied in the literature, using either inflammatory
stimuli such as lipopolysaccharide (LPS), or nutritional stimuli, as
in the oral glucose tolerance test (OGTT), oral lipid tolerance test



Box 3. Modeling strategies

The strategy adopted for modeling the behavior of a system

depends on the purpose of such modeling effort (Kitano,

2001), as well as on the type and amount of available informa-

tion regarding the properties of system components and their

interactions. In the context of statistical modeling, a model can

be used to infer some property of the system from the avail-

able data, or to predict future observations given a subset of

them (Breiman, 2001). In the former approach, often called

explanatory, one typically reasons in terms of the plausibility

and interpretability of the model given the available data,

whereas in the latter, scrutiny is centered on the accuracy of

the model’s predictions when given new data. This distinction

greatly overlaps with the one between data-driven and hy-

pothesis-driven approaches, where the former are more com-

monly employed for predictive purposes, and the latter for

explanatory purposes. In decision-making contexts, e.g. in

diagnostic applications (Haining and Pulendran, 2012), a mod-

el with high predictive accuracy is highly desirable, indepen-

dently of its interpretability; on the other hand, for intervention

purposes, i.e. if one wishes to act on the system, then explan-

atory or causal models may be more useful. Though the same

modeling methods, e.g. regression models, may be used in

both approaches, more common models for the data-driven

approach are neural networks and support vector machines

(Hastie et al., 2009), while classical hypothesis-driven models

are general linear models, Bayesian models and structural

equation models.

Though statistical approaches are capable of including biolog-

ical domain knowledge in the formulation of a model, they

most commonly do so only in a very superficial manner, by

hypothesizing about which variables should influence which

other variables, and not by deriving the corresponding math-

ematical relations from biological mechanisms. Mechanistic

models, on the contrary, set up the mathematical relations

between system components in such a way that the involved

parameters have a physical meaning and can potentially be

targeted by interventions. Systems spanning several biologi-

cal scales (intracellular, tissue, system) can generate mecha-

nistic models with hundreds of parameters (Palsson, 2006),

appearing in nonlinear mathematical relations (Alves et al.,

2008; Gross and Feudel, 2006). This makes parameter estima-

tion a daunting task (Ashyraliyev et al., 2009) and may lead to

overfitting and compromise parameter interpretability. It is

thus important to make a tradeoff between the detail, or

granularity, of the model and its generality. Finally, the frontier

between mechanistic and empirical or statistical models is not

a sharp one, as all models must develop from a purely empiri-

cal basis, which then calls for mechanistic explanations. These

explanations may then cast as hypotheses and tested in new

experiments, likely to fuel new questions and model refine-

ments, in an iterative manner (Aguda and Friedman, 2008;

Beard and Qian, 2008; Szallasi et al., 2010).
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(OLTT), or a combination stimulus (Pellis et al., 2012). Except for
the OGTT, standardization of nutritional challenges is still not
satisfactory (Calder et al., 2013), and is a major focus in the field,
since the inflammatory effects are, in this case, more subtle, and
thus require stringently controlled experimental conditions. High-
throughput methods may be used to comprehensively measure
both metabolic and inflammatory responses to challenges (e.g.
circulating inflammatory mediators measured by proteomics or
multiplex analyses, metabolomics, classical clinical markers, cell
counts, and transcriptomics of PBMCs). Response characteristics,
as given by, e.g. area-under-the-curve (AUC), peak magnitude,
time-to-peak-magnitude, and slope of initial rise, may then be
extracted and combined to define measures of ‘‘response
flexibility’’, the relevance of which depend on their relation to
some other appropriate independent measure of health. One could
have, for example, ‘‘inflammatory flexibility’’, defining the ability
to adapt the inflammatory response to the nutritional (or
inflammatory) stimulus, in accordance with experimental indica-
tions of the importance of different temporal characteristics of
inflammatory responses to stressors (Beck et al., 2010; Krabbe
et al., 2001; Morris et al., 2010). Thus, studying phenotypic
flexibility entails defining the dynamic range for the response of a
given system (or a set of systems) to a certain stressor (or set of
stressors), in physiological and pathological conditions. Mechanis-
tic models of the system carrying out this response, could help in
pinpointing, or at least in narrowing down, the specific sites and
mechanisms of dysregulation responsible for the different
behaviors observed.

5. Strategies for modeling nutritional modulation of
inflammation and metabolic flexibility

Metabolism and immunity are fundamental physiological
functions which critically depend on one another. While nutritional
deficiencies are thought to impair the acute inflammatory response
by decreasing the availability of energy and substrates required for
appropriate immune defense, overnutrition is thought to promote
dysregulation of the physiological dynamics of energy storage and
utilization, thereby engaging local inflammatory pathways and
impairing metabolic function (Hotamisligil and Erbay, 2008). A
proper nutritional intake could therefore be expected to result in an
optimally balanced inflammatory response, by not engaging either
of these pathological mechanisms.

Quantitative modeling of the interactions between metabolic
regulation and inflammatory signaling can help in defining the
characteristics that such a diet should have, in terms of energy
content, as well as proper macro- and micronutrient balance.
Several epidemiological and intervention studies have addressed
the effects of dietary factors and patterns on inflammatory
parameters and some of their underlying mechanisms of action
are known (Calder et al., 2009; Manteiga et al., 2013). Nonetheless,
not many mechanistic models have addressed the dynamics of
nutritional modulation of inflammation, starting from food intake
to downstream effects at the tissue or cellular level. This is a
challenging task because of the multiplicity and complexity of
intermediate biochemical and biophysical phenomena taking
place between nutrient intake and nutrient utilization by different
cells and tissues. Given the enormous number of molecular
components participating in nutritional, metabolic and inflamma-
tory pathways, it is important to know where mechanistic detail
will have added value and where empirical relations will suffice in
quantitatively defining interactions (see Box 3). Multiscale models
linking molecular, cellular, and whole-organ function, allow for the
incorporation of both mechanistic and empirical sub-models at
different scales, and may provide a useful framework on which to
ground modeling efforts (Scheff et al., 2012; Wu et al., 2009). These
models should address the development of a local inflammatory
response at the cellular and tissue level, as well as the
consequences that the systemic spread of inflammatory mediators
has on other organs and tissues and, possibly, on the acute
inflammatory response itself. Such an integrative model of
nutrition, metabolism and inflammation would allow for a better
understanding of how a whole-diet approach manipulates whole-
system behavior in a coordinated fashion, help in identifying
possible synergistic or antagonistic interactions and allow for in
silico testing of the effects of multiple dietary interventions on
inflammatory parameters (see Fig. 1).

As for the different time scales of inflammatory processes
(inflammaging being the longest scale in this perspective), it would
be useful to model the responses of cells and tissues to stimuli of
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different durations and frequencies of repetition. Such stimuli
characteristics may be an additional parameter determining the
specificity or generality of such responses (Young et al., 2013), and
are certainly relevant when prescribing dietary recommendations.
Additionally, in the context of both inflammation and metabolism,
the simultaneous engagement of fast and slow processes in
response to the same stimulus seems to be a common functional
pattern, and the study of its long-term consequences could provide
insights on the transitions between healthy and pathological states
(and vice versa) arising from nutritional stimuli.

Importantly, a certain prescribed dietary intervention will
almost certainly have different effects on different individuals. In
other words, different individuals may follow different ‘‘trajecto-
ries’’ toward improved health, with different ‘‘values’’ on different
‘‘axes of function’’ (inflammatory, metabolic, etc.) (Voit, 2009).
These trajectories may depend, for example, on individual genetic
make-up or on the initial functional level. A model capable of
integrating both of these aspects could be used to disentangle
these two sources of variability, to define a normal functional range
for each individual (based on dynamic considerations instead of
population values) and to help in distinguishing between
parameters or variables that are tightly regulated (kept in
homeostasis) and parameters that can fluctuate between certain
boundaries. Knowing the importance of parameters and individual
make-up will help in development of personalized nutrition.

Finally, in the context of aging, and in addition to ectopic fat
accumulation, bone and muscle loss may also play important roles
in generating low-grade inflammation and metabolic dysfunction;
likewise, increasing numbers of senescent cells and alterations in
gut microbiota composition are also thought to contribute to
inflammaging (Cevenini et al., 2013). These processes may also be
taken into account when building an integrative model, but it is
outside the scope of this paper to extensively discuss the
mechanisms underlying their action.

To summarize, inflammation and metabolism are complex
physiological systems whose dysregulation must be understood in
terms of their underlying dynamics. Mathematical modeling of
such dynamics, with incorporation of mechanistic knowledge on
pertinent interactions, may help in devising nutritional interven-
tions capable of preventing, or ameliorating, the age-associated
functional decline of these systems.
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Alves, R., Vilaprinyo, E., Hernádez-Bermejo, B., Sorribas, A., 2008. Mathematical
formalisms based on approximated kinetic representations for modeling ge-
netic and metabolic pathways. Biotechnology & Genetic Engineering Reviews
25, 1–40.
Aranda, B., Blankenburg, H., Kerrien, S., Brinkman, F.S.L., Ceol, A., Chautard, E., Dana,
J.M., De Las Rivas, J., Dumousseau, M., Galeota, E., Gaulton, A., Goll, J., Hancock,
R.E.W., Isserlin, R., Jimenez, R.C., Kerssemakers, J., Khadake, J., Lynn, D.J., Michaut,
M., O’Kelly, G., Ono, K., Orchard, S., Prieto, C., Razick, S., Rigina, O., Salwinski, L.,
Simonovic, M., Velankar, S., Winter, A., Wu, G., Bader, G.D., Cesareni, G., Donald-
son, I.M., Eisenberg, D., Kleywegt, G.J., Overington, J., Ricard-Blum, S., Tyers, M.,
Albrecht, M., Hermjakob, H., 2011. PSICQUIC and PSISCORE: accessing and
scoring molecular interactions. Nature Methods 8, 528–529.

Ashall, L., Horton, C.A., Nelson, D.E., Paszek, P., Harper, C.V., Sillitoe, K., Ryan, S.,
Spiller, D.G., Unitt, J.F., Broomhead, D.S., Kell, D.B., Rand, D.A., Sée, V., White,
M.R.H., 2009. Pulsatile stimulation determines timing and specificity of NF-
kappaB-dependent transcription. Science (New York, NY) 324, 242–246.

Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J.A., Blom, J.G., 2009. Systems
biology: parameter estimation for biochemical models. FEBS Journal 276, 886–
902.

Bader, G.D., Betel, D., Hogue, C.W.V., 2003. BIND: the Biomolecular Interaction
Network Database. Nucleic Acids Research 31, 248–250.

Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M.,
Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H.,
Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A., 2013. NCBI GEO:
archive for functional genomics data sets – update. Nucleic Acids Research 41,
D991–D995.

Bartlett, D.B., Firth, C.M., Phillips, A.C., Moss, P., Baylis, D., Syddall, H., Sayer, A.A.,
Cooper, C., Lord, J.M., 2012. The age-related increase in low-grade systemic
inflammation (inflammaging) is not driven by cytomegalovirus infection. Aging
Cell 11, 912–915.

Basak, S., Behar, M., Hoffmann, A., 2012. Lessons from mathematically modeling the
NF-kB pathway. Immunological Reviews 246, 221–238.

Bassingthwaighte, J.B., Chizeck, H.J., 2008. The Physiome Projects and Multiscale
Modeling. IEEE Signal Processing Magazine 25, 121–144.

Beard, D., Qian, H., 2008. Chemical Biophysics – Quantitative Analysis of Cellular
Systems. Cambridge University Press, Cambridge, UK.

Beard, D.A., Neal, M.L., Tabesh-Saleki, N., Thompson, C.T., Bassingthwaighte, J.B.,
Shimoyama, M., Carlson, B.E., 2012. Multiscale modeling and data integration in
the virtual physiological rat project. Annals of Biomedical Engineering 40,
2365–2378.

Beck, K.D., Nguyen, H.X., Galvan, M.D., Salazar, D.L., Woodruff, T.M., Anderson, A.J.,
2010. Quantitative analysis of cellular inflammation after traumatic spinal cord
injury: evidence for a multiphasic inflammatory response in the acute to
chronic environment. Brain: A Journal of Neurology 133, 433–447.

Behar, M., Hoffmann, A., 2010. Understanding the temporal codes of intra-cellular
signals. Current Opinion in Genetics & Development 20, 684–693.

Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C., Brigidi, P., 2012. Ageing of
the human metaorganism: the microbial counterpart. Age (Dordrecht, Nether-
lands) 34, 247–267.

Blagosklonny, M.V., Hall, M.N., 2009. Growth and aging: a common molecular
mechanism. Aging 1, 357–362.

Brazma, A., 2009. Minimum Information About a Microarray Experiment (MIAME) –
successes, failures, challenges. ScientificWorldJournal 9, 420–423.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C.,
Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P.,
Holstege, F.C., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A.,
Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., Vingron, M., 2001.
Minimum information about a microarray experiment (MIAME)-toward stan-
dards for microarray data. Nature Genetics 29, 365–371.

Breiman, L., 2001. Statistical modeling: the two cultures (with comments and a
rejoinder by the author). Statistical Science 16, 199–231.

Breuer, K., Foroushani, A.K., Laird, M.R., Chen, C., Sribnaia, A., Lo, R., Winsor, G.L.,
Hancock, R.E.W., Brinkman, F.S.L., Lynn, D.J., 2013. InnateDB: systems biology of
innate immunity and beyond – recent updates and continuing curation. Nucleic
Acids Research 41, D1228–D1233.

Busse, D., De la Rosa, M., Hobiger, K., Thurley, K., Flossdorf, M., Scheffold, A., Höfer, T.,
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