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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

The idea of realizing the twin of a physical system is not a 
new concept, since it was already used by NASA over half a 
century ago during the Apollo program, where “at least two 
identical space vehicles were built to allow mirroring the 
conditions of the space vehicle during the mission” [1]. 
Another artifact exemplifying the concept of hardware twin is 
the Iron Bird [2], i.e., a ground-based engineering tool used in 
aircraft industries to incorporate, optimize and validate vital 
aircraft systems. The recent continuous evolution of 
information and communication technologies (ICT) is paving 
the way to the opportunity of realizing a Digital Twin (DT) 
instead of a Physical Twin (PT).  Compared to the latter, DT 
has a lower realization cost since some or all of the complex 
real components can be virtually reproduced; in addition, the 
DT can be enhanced with simulation capabilities, thus making 
the DT more valuable and powerful than the PT. The term DT 
was brought to the general public for the first time in NASA’s 
integrated technology roadmap [3], where it was defined as 
“an integrated multi-physics, multiscale simulation of a 
vehicle or system that uses the best available physical models, 

sensor updates, fleet history, etc., to mirror the life of its 
corresponding flying twin”. By combining all this 
information, the DT continuously forecasts the health of the 
vehicle/system, the remaining useful life and the probability of 
mission success. In the field of manufacturing, the concept of 
DT has been used to refer to a “comprehensive physical and 
functional description of a component, product or system, 
which includes more or less all information, which could be 
useful in later lifecycle phases” [4]. In manufacturing, DT has 
been also seen as a digital avatar encompassing Cyber 
Physical System (CPS) data and intelligence: structure, 
semantics and behavior of the associated CPS, providing 
services to mesh the virtual and physical worlds [5]. In 
addition, DT can be seen as a complex system in high-
dimensional spaces which requires handling large and noisy 
data, high-precision arithmetic, multi-model and multiscale 
algorithms [6]. 

Besides these well-known examples and definitions, the 
concept of DT is a result of the ongoing digitization process, 
i.e., the “integration of the digital technologies into everyday 
life by the digitization of everything that can be digitized” [7]. 
The digitization is making progress in various industrial fields 
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besides aerospace, including also manufacturing. Particularly, 
the industrial Internet of Things, the Cyber-Physical Systems 
and Big Data technological solutions can be considered 
enabling technologies for the effective implementation of the 
DT. The potential of the DT in the field of manufacturing has 
been recently analyzed in several scientific articles and 
publications [8] [9] [10], showing how the digital twin can be 
enhanced thanks to further connections and synchronizations 
with the real factory. The relevance of the DT in the modern 
factories is also demonstrated by the inclusion of this topic in 
the scope of various strategic roadmaps of industrial and 
scientific research [11]. However, an up-to-date state of the art 
highlights how far we are from a large-scale diffusion of DT 
as “current approaches to the implementation of digital twins 
lack of a conceptual basis, which hinders the applicability of 
the digital twin vision to various activities in design and 
production engineering” [9]. Indeed, “there are many 
challenges that must be overcome in developing the DT. It is 
difficult to put together a comprehensive DT development 
plan that covers a decade or more of activities” [6]. In order to 
contribute to bridge this gap, the main goal of this paper is to 
investigate the major challenges that a manufacturing 
company has to face to implement the DT. This analysis is 
coupled with a review of the most important benefits deriving 
from the effective and efficient use of a fully-synchronized 
and faithful DT. In particular, by collecting, analyzing and 
synthesizing some of the major contributions on the theme of 
DT synchronization, this paper addresses the following 
research questions (RQ): 
Q1. Which are the benefits and main motivations behind the 

concrete realization of the DT? 
Q2. Which are the challenges to be faced in order to bridge 

the gaps currently hindering the concrete realization of 
the DT? 

Q3. To what extend the current enabling technologies enable 
the proper synchronization of the DT?  

The outcomes of this investigation will be exploited by a 
future second stage of our research, which aims at identifying 
valid solutions to support industrial companies while 
addressing the challenges mentioned above. 

The remainder of this paper is organized as follows. 
Section 2 introduces a conceptual model for DT. Section 3 
analyzes the major benefits deriving from the DT (RQ Q1). 
Section 4 summarizes the main challenges that need to be 
addressed to realize the DT (RQ Q2) and the corresponding  
enabling technologies (RQ Q3). Finally, the Section 5 draws 
the conclusions and summarizes the main outcomes. 

2. Digital Twin conceptual model 

The DT represents a new, captivating but still a blurry 
concept; for this reason, this section proposes a conceptual 
model, to enhance the understanding of the DT by 
highlighting its main entities and relations. Figure 1 provides 
a picture of the proposed model,that puts in evidence the 
continuous synchronization between the Real Factory and its 
digital counterpart, i.e., a constant mirroring of the two sides 
that can lead to the benefits described in the following 
sections. The synchronization is realized by means of two 

streams of data. The first one (from left to right) represents 
the real-time monitored data flow and includes all physical 
variables sensed at the factory shop floor level by ubiquitous 
sensors attached to various physical components of the 
factory (e.g., machines, automation systems, etc.) and 
transmitted with a high-frequency towards the digital space. 
Conversely, the second stream (from right to left) involves 
actions to be performed real-time or near real-time at shop 
floor level, representing the feedback returned from the digital 
space to the real factory, e.g., corrective actions and planning 
decisions that can be the result of the execution of control 
algorithms. In addition, it is generated a low-frequency wave 
returning back to factory floor (arrow in blue at the top), 
which implements all strategic decisions taken from company 
management and generates long-period benefits with proper 
return of investments along the whole factory’s lifecycle. 

The knowledge model underpinning the digital counterpart 
of the factory (the right part of the figure) is composed of 
three blocks: the DT Component Logical Schema, the DT 
Component Instances and the Historical persisted Data. The 
first one is a formal representation of a component used 
within the factory, i.e., an abstract characterization of the 
component with all its parts and logical relations existing 
between parts. Moreover, it also contains a description of the 
behavior of the component. Logical schema of different 
components integrate and contribute to create the schema of 
the entire factory floor, leveraging the modularity capabilities 
of the DT [4]. If the DT Component Logical Schema 
represents the intensional aspect of the model of any physical 
object, process and operation, the DT Component Instances 
block represents its concrete instantiation, i.e., the digital 
counterpart specific to the tail number of a product or 
component [4]. The third block of the DT model is the 
temporal (or historical) extension of the twin, i.e., all product 
or system historical data accumulated from the early phases of 
the production until its disposal.  

 
 

 
Fig. 1. The DT conceptual model. 

3. Benefits deriving from real-virtual synchronization 

In the following subsections, a list of benefits deriving 
from the fully synchronization between the Real Factory and 
its digital counterpart will be presented.  
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3.1. Support to the production process along the entire 
factory and product lifecycle 

The advantages of the DT are not limited to a single  
product or factory lifecycle phase. Indeed, the DT can 
permeate the whole production process and affect the factory 
at different level (from single product to connected 
enterprises) and at different stages. In this regard, a significant 
example of advantage consists in the support of the Digital 
Continuity, a paradigm that guarantees the availability of 
information in all product and factory lifecycle stages. By 
virtue of the Digital Continuity, “information created in each 
stage of the product lifecycle is seamlessly made available to 
subsequent stage” [1], thus creating a “mutual promotion 
process between virtual and physical space of product 
lifecycle” [12], which “optimizes various activities in the 
entire product lifecycle, as they can be simulated, monitored, 
optimized, and verified in the digital space” [12].  

Specifically concerning the product design phase, the DT 
can support the conceptual design, the detailed design, and the 
virtual verification. In the first stage, a designer can quickly 
understand how to improve the product characteristics by 
accessing to an integrated and complete source of information 
made possible by the DT. Furthermore, in representing a 
faithful image of the physical product, the DT makes the 
communication between clients and designers more effective, 
transparent and faster. The detailed design stage generally 
requires repeated simulation and tests to ensure that a product 
prototype can achieve the desired performance. In this case, 
since the DT can exist during the whole lifecycle of physical 
objects and coevolve with them, it is possible to cope with the 
lack of real-time data and data related to the environmental 
impact, which potentially affect the simulation tests results. 
Finally, regarding the virtual verification, designers can 
exploit the DT to create vivid simulation scenarios where the 
prototypes are tested to accurately predict the actual 
performance of the physical products as far as possible [12].  

Beneficial effects also occur in the pre-production, 
production and product use and maintenance phase. For 
example, in the case of aircrafts production, “material state 
evolution models would be integrated into a single unified 
structural model that is tightly coupled to a DT. It can evolve 
as the usage of the vehicle and the age of the structure dictate; 
therefore, in addition to providing a structural life prediction 
tool, the DT also facilitates configuration control for an 
individual aircraft, thus enabling better management of an 
aircraft throughout its service life”. Furthermore, this will 
allow better maintenance decisions to be made in a timely 
manner [6]. Benefits of DT go beyond the single factory life 
cycle since DT is independent of manifestations or specific 
realizations. For example, the equipment of a production 
system consists of different production units, which in turn 
can be seen as products provided by other companies. DTs of 
these products can be useful for the (virtual) commissioning 
of the productions system and also for the operation of the 
production system, e.g., for maintenance planning [4]. In 
addition, the DT evolves across the real system along the 
whole life cycle and integrates the currently available 
knowledge about it.  

3.2. Closed loop between real and virtual factory worlds 

As depicted in Figure 1, one of the major result of 
implementing a fully synchronized DT is the realization of a 
closed loop between the real and digital space. The closed 
loop is realized through a two-way communication: (1) the 
information transfer from the physical to the DT by means of 
the observation and sensing of the physical twin, (2) the 
information transfer from the digital to the physical twin 
originating from scientific assumptions, simulation, and 
virtual testing models [9]. Many are the advantages of closing 
the loop: feedback from virtual to real are used to apply 
corrective decision over the real factory (real plant, systems or 
product) over the whole product’s life cycle as discussed in 
the previous subsection. In addition “DT can close the loop 
from operation and service back to design of new products or 
updated revisions” [4].  

3.3. Support to Teaching Factory  

The first concept of PT, as conceived in the NASA Apollo 
program, was exploited for training purposes, since it was 
used during flight preparations and for simulating alternatives. 
In general, the replication of real production environment in 
order to reproduce an authentic learning instructional setting 
for the training of workers is an inherent concept of the 
Learning Factory, conceived as real industrial site, which 
allows a direct approach to the product creation process [13]. 
Learning Factories are based on a didactical concept 
emphasizing experimental, problem-based and authentic 
learning [14]. The concept of Learning Factory has evolved 
into other notions like the Knowledge Factory, the Model 
Factory and, most importantly, the Teaching Factory, which 
are used to describe similar kinds of learning systems. The 
Teaching Factory uses the cutting edge technologies deriving 
from the visual approach to manufacturing (AR/VR) and e-
enhanced learning tools (e.g. Virtual collaboration classroom, 
Computer-based Training, and so forth) in order to align 
manufacturing training and teaching to the need of an 
increasingly complex industrial scenario [15]. Due to the strict 
synchronization and the closed loop between the real and the 
digital factory, the DT enhances the collaboration between 
stakeholders, strongly supporting “the human knowledge 
toolkit, i.e., conceptualization, comparison and collaboration” 
[8], and thus contributing to the realization of the teaching 
factory. 

3.4. Understanding data relationship, data consistency and 
integrity checks 

By adopting proper formalisms to model enterprise 
information at different levels of details, DT can aid in 
understanding the relationship between a physical factory and 
its underlying information. Knowledge representation 
languages, which are based on first-order logics like 
description logics or ontologies, can be used to automatically 
infer new knowledge (in terms of axioms) starting from the 
axiomatized representation of the product, process and 
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production process, also ensuring data and knowledge 
integration [16][17]. 

The unique digital model underlying the DT represents the 
systems, resources, and production processes to be used 
throughout the factory lifecycle. In addition, it ensures data 
consistency and integrity and prevents data loss or corruption 
when different software tools access or modify partial areas of 
the digital model in different time intervals [18]. Consistency 
and integrity checks are particularly relevant in regulated 
industries, such as food and beverage or pharmaceutical, 
where documentation and proof of processes, events and 
actions may be required. In these scenarios, it is essential the 
role of DT that “provides an interface to different models and 
data in different granularities and keeps them consistent.” [4] 

3.5. Decentralization of the production  

The DT is an enabler of decentralization of production 
systems control and therefore a key for achieving a new level 
of flexibility in automation systems. Under these conditions, 
the DT flatten the automation pyramid, leading to large scale 
distributed automation solutions [5]. According to [1], DT can 
contribute to “turn automated systems into autonomous 
systems, which provides the production system with the 
ability to respond to unexpected events in an intelligent and 
efficient manner, without the need for re-configuration at the 
supervisory level”. According to [5], the decentralization is 
guaranteed by a micro-services architecture, i.e., software 
development techniques where services are fine-grained and 
the protocols are lightweight [19]. This architecture brings the 
benefits of Agility, Isolation and Resilience, as machines have 
the ability of self-recovery after a failure, and Elasticity, as a 
platform can be subject to variable workloads especially on 
seasonal basis and is able to respond to workload changes 
provisioning or dismissing computational power [5]. 
Furthermore, the modularity of the DT, made possible by 
modular representation languages, as described in the 
previous subsection, makes the DTs of the product parts 
directly available to the production units, enabling the latter to 
orchestrate the part flow autonomously through, for instance, 
a process of negotiation [1]. 

3.6. Support to smart products 

The advances in microchip, sensor and ICT paved the way 
for the advent of smart products, which track and 
communicate their operating conditions and thus allow to feed 
their product models with data about their status, such as 
environmental conditions and loads [9]. The general idea is 
that a DT approach can support smart products, thus 
extending the physical product with a kind of shadow of the 
product in the digital space. Such shadow enables: (1) the 
study of the effects of various parameters related to the 
product; (2) the study of the effect of various anomalies to be 
determined along with fault, degradation and damage 
mitigation strategies; (3) to perform in-situ forensics in the 
event of a potentially catastrophic fault or damage.  

4. Challenges to exploit the DT in its full potential 

On the basis of a literature review, it is possible to identify 
a list of major challenges that a manufacturing company has 
to face to effectively implement the DT in its full potential. 
This list, representing the contribution in response to the RQ 
Q2 posed in section 1, is presented in the following 
subsections. In addition, in response to the RQ Q3, a brief 
analysis of the available enabling technologies is proposed for 
each challenge (Figure 2). 

4.1. Connection with the Real Factory 

An updated state of the art of the methods for connecting 
the Real Factory with its DT in production systems highlights 
that these methods have not yet been fully standardized and 
they also often lack of key functionalities [20]. In particular, 
critical aspects of the connection with the Real Factory that 
have to be addressed are the data acquisition, validation and 
transmission. Related technologies to enable the first two 
stages include “heterogeneous resources real-time perception 
and access technology, multi-source/modal data fusion and 
encapsulation technology, multi-source data communication 
and distribution technology” [12]. Among the data 
communication technologies, the OPC Unified Architecture is 
a de-facto standard for the machine to machine 
communication protocol in industrial automation. Finally, 
concerning the stage of transmission, ultra-high-speed 
transmission is an enabling technology [12] 

 Whenever the acquisition of real measurements are not 
feasible for technical reasons, this acquisition can be 
performed with virtual sensors which simulate the data in 
motion coming from the Real Factory [4]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The DT synchronization challenges and technological solutions. 

 

4.2. Granularity of the synchronization process 

DT is underpinned by “a digital model of the environment, 
which must be as precise and detailed as its real twin in order 
to execute accurate simulations and evaluations” [21]. If this 
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model becomes indistinguishable from its real counterparts, 
then it can give a significant contribution to “bridge the gap 
between design and manufacturing” [9]. However, a detailed 
synchronization process can entail a significant processing 
cost, especially if paired with a high sampling frequency. For 
this reason, it is relevant to face the challenge to find the right 
compromise between the detail level of the DT and the 
efficiency of the synchronization process [22]. Enabling 
technologies related to this challenge include multi-
granularity/scale data planning [12] and High Performance 
Computing. The detail level of the DT can be measured  
through its fidelity, i.e., the ability that describes the closeness 
of the DT to the physical world [9]. According to 
Grieves [23], the fidelity of the DT can be also evaluated 
through three specific tests: the Visual Test, the Performance 
test and the Reflectivity test.   

4.3. Management of the real-time and historical data 

The real-time monitoring of the current system capabilities 
enables to update the decisions about maintenance strategy, to 
predict failures, and to implement product lifecycle energy 
optimization strategies. In order to dynamically assess the 
performance of a production system, it is essential to connect 
to the latter (sect.  4.1) and then process its produced data in 
real-time. In particular, these data have to be managed within 
a circular process in the two directions (Figure 1): from the 
real factory to the DT for feeding the Online DT and from the 
DT to apply actions to the real factory.  Under these 
conditions, the technological system supporting the DT must 
be endowed with scalable capabilities that enable to harvest 
real-time data which can be captured, processed and 
transformed into significant insights in an efficient manner. 
Another relevant challenge consists in the persistence and 
accumulation of the acquired data (historical data) for feeding 
the offline analysis. Referring to the common Big Data 
characterization of the three Vs, the handling of the real-time 
data affects mainly the data Velocity Dimension, while the 
accumulation of the historical affects the data Volume 
Dimension. The data Volume of the DT continues to increase 
during the whole factory lifecycle. In addition, in Small 
Medium Enterprise the database of production data “is 
extremely heterogeneous, and its quality regularly insufficient 
for the realization of the DT” [20].  

Enabling technologies to cope with this challenge are the 
mechanisms for managing data leveraging databases and 
microservices to historicize and display the acquired data, and 
cutting-edge processing and storage mechanisms operating on 
cluster system (e.g., NoSQL databases) distributed on cloud. 
In this regard, cloud based systems have to be taken into 
account to ensure the horizontal scalability of storage, 
computation, and communication capabilities, and to 
decouple storage, data processing, and data management [24]. 
Finally, it is essential to investigate data security issues with 
the aim to ensure confidentiality, integrity and availability of 
sensible data [20] [5].  

4.4. Support for Advanced Simulation and Forecasting Tools 

DT not only enables to monitor information in real time 
but also collect and use this information in order to properly 
simulate the factory performance. In this way, DT offers the 
capabilities to perform the operations through a simulation 
environment where the various resources can be tested 
through different configurations. When a DT based simulation 
is used on the shop floor close to the modeled production 
resources, it gives a digital representation that looks and 
behaves exactly like the resources themselves. This approach 
can be realized only if the DT is fully supported by the 
various software tools that enable to model and simulate the 
complex dynamics of a manufacturing system (e.g., discrete 
or continuous simulators) where the system can refer to a 
single cell, a production line, or an entire factory. Another key 
success factor of this approach is the capability to set up the 
initial conditions of the simulation models through a true 
snapshot of the real system (e.g., based on the collected 
historical data) [25] [26]. The following technologies need to 
be addressed to support this approach: “multi-scale modeling 
technology, virtual production operation simulation and 
verification technology, virtual maintenance technology, 
virtual reality, and augmented reality technology” [12]. In 
addition, another major enabling technology that have to be 
addressed is High Performance Computing, which allows to 
answer to the demand of higher performance deriving from 
the advances in mathematical methods and algorithms within 
complex simulation models. 

4.5. Data and Intelligence distribution 

 Another challenge consists in the study of valid strategies 
for distributing intelligence and data of the DT close to the 
various production resources, so that a data deluge from the 
shop floor toward the DT can be avoided. Indeed, the 
distribution of the intelligence can contribute to reduce the 
volume of data sent to the network by the involved resources, 
thus also reducing the transmission time and increasing the 
network availability. Such challenge can be tackled with the 
Edge Computing paradigm [27], which provides the 
processing and computation close the data sources and for this 
reason part of the computing power and storage space are 
moved near the place where data are generated. Another 
enabler to distribute the intelligence is the microservice based 
architecture, which can contribute to reduce the stratification 
and the separation in layers of the classical conception of the 
automation pyramid. 

4.6. Enhancing the interoperability of the production 
resources 

 The DT concept requires a homogeneous perspective of the 
handled information that persists across the different 
functional boundaries. However, the realization of this 
perspective is hindered by the lack of interoperability between 
software systems that support the different aspects of the DT. 
In this regard, there are three major obstacles that need to be 
addressed. These obstacles are organizational siloing, 
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knowledge of the physical world, and the number of possible 
states that systems can take [23]. Moreover, the lack of widely 
accepted standards and of architectural references to achieve 
interoperability contributes to worsen an already complex 
scenario [5][28]. A potential solution is a data model shared 
among the involved software. The data model should 
represent both static and dynamic characteristics of the real 
factory. Enablers for addressing this challenge are the 
languages, technologies and tools to develop the data model 
as well as available standards for modeling its contents.  

5. Conclusion and future investigations 

Starting from a focused literature review, this work has 
identified many benefits deriving from the realization of a 
fully-synchronized factory twin and numerous challenges to 
be addressed in order to make it a viable solution. An 
examination of the technological panorama to overcome such 
difficulties has been also provided. The major obstacles derive 
from the nature of the DT, as it represents a complex system 
in high-dimensional spaces, thus requiring integrated multi-
physics, multi-domain, multiscale modeling technology and 
ultra-high synchronization and fidelity between the virtual and 
physical space. Many of the technological solutions 
addressing all these facets are at the cutting edge of 
corresponding enabling technologies: Big Data, High-
Performance Computing, Cyber Physical Systems, in situ 
probabilistic simulation, knowledge-based modelling and 
representation, to cite a few. Thus, advances in many 
disciplines must to be expected before the DT can be fully 
realized. Meanwhile, current studies and use cases, although 
downscaling the problem, represent good examples towards 
the DT concept and can help to illuminate the path. Future 
lines of investigations will attempt to measure the maturity 
grade of a company in adopting and implementing the DT 
within the factory floor. In this regards, the evaluation tests 
for virtual systems developed in [23] can be adopted with 
proper modifications and applied to a specific study case. In 
addition, a future research will aim at supporting industrial 
companies in identifying valid solutions to address the 
challenges mentioned in this study. 
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