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A B S T R A C T

Cloud detection in optical remote sensing images is a crucial problem because undetected clouds can produce
misleading results in the analyses of surface and atmospheric parameters. Sentinel-2 provides high spatial re-
solution satellite data distributed with associated cloud masks. In this paper, we evaluate the ability of Sentinel-2
Level-1C cloud mask products to discriminate clouds over a variety of biogeographic scenarios and in different
cloudiness conditions. Reference cloud masks for the identification of misdetection were generated by applying a
local thresholding method that analyses Sentinel-2 Band 2 (0.490 μm) and Band 10 (1.375 μm) separately;
histogram-based thresholds were locally tuned by checking the single bands and the natural color composite
(B4B3B2); in doubtful cases, NDVI and DEM were also analyzed to refine the masks; the B2B11B12 composite
was used to separate snow.

The analysis of the cloud classification errors obtained for our test sites allowed us to get important inferences
of general value. The L1C cloud mask generally underestimated the presence of clouds (average Omission Error,
OE, 37.4%); this error increased (OE > 50%) for imagery containing opaque clouds with a large transitional
zone (between the cloud core and clear areas) and cirrus clouds, fragmentation emerged as a major source of
omission errors (R2 0.73). Overestimation was prevalently found in the presence of holes inside the main cloud
bodies. Two extreme environments were particularly critical for the L1C cloud mask product. Detection over
Amazonian rainforests was highly inefficient (OE > 70%) due to the presence of complex cloudiness and high
water vapor content. On the other hand, Alpine orography under dry atmosphere created false cirrus clouds.
Altogether, cirrus detection was the most inefficient. According to our results, Sentinel-2 L1C users should take
some simple precautions while waiting for ESA improved cloud detection products.

1. Introduction

Sentinel-2 is one of the core missions of the Copernicus Earth
Observation programme of the European Union. With enhanced observa-
tion capabilities, it ensures continuity and complementarity with Landsat
and SPOT (Satellite Pour l'Observation de la Terre) observations (Fletcher
and European Space Agency, 2012). This mission aims to meet different
user needs and to improve numerous Copernicus operational applications
(ESA Sentinel-2 Team, 2007) such as:

• land monitoring service: land use and land cover state and changes;
biogeophysical parameters estimation; forest monitoring; urban
mapping; spatial planning; agro-environmental monitoring; natural
resource monitoring; land carbon/carbon storage; global crop
monitoring; coastal zone monitoring; soil sealing;

• risk management: floods and forest fires, subsidence and landslides,

volcano eruptions;

• food security/early warning systems;

• water management;

• soil protection;

• terrestrial mapping for humanitarian aid and development;

• global change issues.

Despite the short lifetime, many authors have already experienced
the great potentialities of Sentinel-2 data to: classify crop and tree
species (Immitzer et al., 2016); monitor natural and anthropic vege-
tation (Bontemps et al., 2015; Greco et al., 2018; Song et al., 2017);
map glaciers (Paul et al., 2016) and water bodies (Du et al., 2016;
Toming et al., 2016; Yesou et al., 2016); assess and monitor water
constituents (Dörnhöfer et al., 2016); classify burn severity
(Fernández-Manso et al., 2016; Huang et al., 2016); map built-up
areas (Lefebvre et al., 2016; Pesaresi et al., 2016); and detect Sub-
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Pixel Landscape Feature (Radoux et al., 2016). More in general, these
data have proven to be useful in several geological studies (van der
Werff and van der Meer, 2016).

As an optical remote sensing system operating in the wavelength range
between 0.443 μm and 2.190 μm, Sentinel-2 data are sensitive to cloud
cover. To correctly implement Copernicus applications and, in general, for
retrieving accurate surface parameters, the first required step is the de-
tection of clouds into the Sentinel-2 MSI (MultiSpectral Instrument) ima-
gery because these can severely disturb the correct extraction of atmo-
spheric or surface information using optical remote sensing satellite data
(Greenhough et al., 2005; Huete et al., 2002; Kaufman, 1987; Nakajima
et al., 2011; Woodcock et al., 2008; Gao and Li, 2017).

From an optical remote sensing point of view, clouds can be roughly
classified in:

• opaque/dense clouds, mainly composed of droplets that are highly
reflective in the VIS region and generally located at low-medium
altitudes;

• cirrus, consisting of a large number of thin non-spherical ice crystals
that are normally translucent in the VIS region, relatively highly
reflective in the SWIR spectrum, and located at high altitude.

Clouds play an important role in climate variability and change as
they reflect solar (albedo effect) and terrestrial (greenhouse effect) in-
frared radiation. The different spectral properties make cirrus the
principal cloud type controlling the Earth's radiation budget (Dessler
and Loeb, 2013; Zhou et al., 2013). Clouds usually cover large portions
of the Earth's surface: globally cirrus clouds, the most difficult to be
detected (Xu et al., 2014), are thought to cover on average about 17%
of the surface with> 50% in the Intertropical Convergence Zone
(Kovalskyy and Roy, 2015 and references therein). Recent estimates
suggested that low altitude clouds, typically non-cirrus, may co-exist
with spatially overlapping cirrus clouds and that, more in general,
about 30% of low clouds are overlapped by high clouds (Kovalskyy and
Roy, 2015 and reference therein).

Clouds largely affect the transmission of radiation between the sa-
tellite sensors and surface targets, reducing the ability to identify land
covers, decreasing the accuracy of the retrieval of surface parameters,
and providing misleading information on monitored surfaces
(Kazantzidis et al., 2011; Lanfredi et al., 2015; Li et al., 2011; Sun et al.,
2016). The multiple types of clouds and the complexity of land struc-
tures further complicate their detection due to the frequent difficulty in
distinguishing clouds from the underlying landscape, even at high re-
solution (Hagolle et al., 2010; Jedlovec et al., 2008).

Sentinel-2 MSI, even if lacks thermal bands which are included in
other sensors such as Landsat and ASTER, has spectral bands useful to
provide better cloud screening and compensation of atmospheric ef-
fects: Band 1 (centered at 0.443 μm with 60m of spatial resolution),
Band 2 (centered at 0.490 μm with 10m of spatial resolution), Band 9
(centered at 0.945 μm with 60m of spatial resolution), Band 10 (cen-
tered at 1.375 μm with 60m of spatial resolution), and Band 12 (cen-
tered at 2.190 μm with 20m of spatial resolution). In particular, Band
10 (hereafter B10) at 1.375 μm is based on MODIS (Moderate
Resolution Imaging Spectroradiometer) and Landsat 8 OLI (Operational
Land Imager) sensors design heritage and provides the possibility to
examine the incidence of cirrus clouds. The opportunity to dispose of all
this information, contextually acquired by the same sensor, is rather
new in satellite systems primarily intended for operational services. It
represents a prerequisite for establishing fundamental environmental
and climate data records to obtain consistent products and harmonized
time series (Berger et al., 2012; Simoniello et al., 2004).

Sentinel-2 images are among the first high resolution data dis-
tributed with an associated cloud mask, followed by the VENμS
(Vegetation and Environment monitoring on a New MicroSatellite)
mission (French and Israeli cooperation) launched on 1 August 2017.
Sentinel-2 Level-1C (L1C) products include cloud masks to simplify the

user's work and to provide many useful products ready for delivery.
Cloud masks identify cloudy pixels and separate them from those that
are cloud-free. They include both dense clouds and cirrus clouds, by
specifying the cloud type with an indicator. Moreover, statistical in-
formation about the percentage of dense cloud and cirrus pixels is en-
closed.

During these two years of activity, many efforts have been made by
ESA and related Sentinel-2 working groups to improve the performance
of Sentinel-2 data and products. Corrections were implemented to ob-
tain a high signal to noise ratio in L1C bands. In particular, for SWIR
B10, scattered pixels labeled as “no data” because of the presence of
instrument noise have been corrected. Sentinel-2 cloud masks are cur-
rently adjusted to minimize underdetections, which leads, on the other
hand, to overdetections (Clerc et al., 2015).

By taking into account the relevance of cloud-free images for surface
characterization and the peculiarities of the Sentinel-2 imagery, the aim
of this study is to perform a first assessment of the cloud mask product
included in the Sentinel-2 L1C data.

This study wants to evaluate if: 1) Level-1C cloud masks are enough
accurate to select cloud-free pixels for land users' needs; 2) there are
differences in performance depending on the environmental conditions;
3) the type and the configuration of clouds influence the detection
accuracy.

To this aim, we selected scenes from different biogeographic sce-
narios and cloudiness conditions to infer the most common error
sources as well as to identify environments that are particularly critical
for the L1C cloud detection algorithm. Such an assessment can be very
useful to support informed surface studies, based on high quality data.

2. Study areas and data

To assess the Sentinel-2 L1C cloud mask product in different en-
vironmental and sensing conditions, we selected scenes from different
biogeographic regions, characterized by heterogeneous land cover and
located at different altitudes (from the sea level to above 2000m a.s.l.).
Sentinel-2 tiling grid in KML format (available at the following link:
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-
products, last access 25/01/2018) was used to obtain a preview of the
test-sites on Google Earth.

Finally, nine Sentinel-2 L1C images, acquired in different seasons
(in the period August 2015 – March 2016), characterized by different
cloud types (cirrus and opaque) and cloud coverage (0.37–50%), were
downloaded (Table 1). Moreover, the selected images were processed in
different ground-stations: Matera Core Ground Segment (MTI), Sval-
bard Core Ground Segment (SGS), and Spanish Processing Archive
Centre located in Madrid (EPA).

Even if the images have different processing baselines (from N02.00
to N02.04), the corrections implemented in the processing chain do not
involve modifications in the cloud mask processing steps.

Data are available at no cost at the Sentinel Scientific Data Hub, the
public archive of Sentinel-2 products (https://scihub.copernicus.eu/
dhus/#/home). The global distribution of the selected test sites is il-
lustrated in Fig. 1.

Level-1C is composed of granules, also called tiles, of about
110 km×110 km (10,980×10,980 pixels at 10m of spatial resolu-
tion) ortho-images in UTM/WGS84 (Universal Transverse Mercator/
World Geodetic System 1984) projection. Each tile consists of 13
compressed JPEG-2000 images (total spectral range between 0.443 μm
and 2.190 μm); each image represents one single band (intensity range
of 15 bits) with a spatial resolution depending on its native resolution:
10m for the 4 VIS/NIR bands (the classical blue at 0.490 μm, green at
0.560 μm, red at 0.665 μm, and near-infrared at 0.842 μm); 20m for the
6 red-edge/shortwave infrared bands (four narrow bands in the vege-
tation red-edge spectral domain respectively at 0.705 μm, 0.740 μm,
0.783 μm, and 0.865 μm, and two large SWIR bands at 1.610 μm and
2.190 μm); and 60m for the 3 atmospheric correction and cloud
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screening bands (0.443 μm for aerosol retrieval, 0.945 μm for water
vapor retrieval, and 1.375 μm for cirrus cloud detection) (European
Space Agency (ESA), 2015). For details about the Sentinel-2 spectral
responses see Appendix A.

The L1C pixel values refer to the Top Of Atmosphere (TOA) re-
flectance. Cloud masks are associated with each tile. The product is also
complemented by: general information regarding granule elements;
geometric info providing the geolocation of the granule; quality in-
dicators (radiometric quality, geometric quality, image content quality,
quality control checks information); auxiliary data (Ground Image
Processing Parameters – GIPP, Digital Elevation Model - DEM, and
Global Reference Image - GRI, a set of unitary reference images cov-
ering one orbit); and meteorological ECMWF (European Center Medium

Weather Forecast) parameters (Total Column Ozone - TCO3, Total
Column Water Vapor – TCWV, and Mean Sea Level Atmospheric
Pressure - MSLP) (Thales Alenia Space, 2016).

2.1. Level-1C cloud mask product

Cloud masks associated with images are vectors in Geography
Markup Language (GML) format, easy to be overlapped to raster band
images. Level-1C cloud detection is based on a simple algorithm that
identifies the following classes: opaque clouds, also called dense clouds,
and cirrus (https://sentinel.esa.int/web/sentinel/technical-guides/
sentinel-2-msi/level-1c/cloud-masks, last access 25/01/2018).

LC1 algorithm is based on visible (Band 1 at 0.443 μm or Band 2 at

Table 1
List of the selected Sentinel-2 images for testing the L1C cloud mask product with the main acquisition characteristics: sensing date, location, cloud cover percentage,
surface features, solar zenith angle (SZA), incidence/view zenith angle (IZA) for band 2 (B2) and band 10 (B10). The first part of the granule (tile) name is the same
for all the identified images (S2A_OPER_MSI_L1C_TL); the granule ID reports the second part.

Granule ID Sensing date UTM zone Clouds percentagea Surface featuresb SZA IZA
B2

IZA
B10

SGS_20151225T153139_A002650N02.01 2015-12-25 33TVF 50.00 F/A/B/S 66.07 4.88 4.95
MTI_20160306T224020_A003683.N02.01 2016-03-06 18TYL 34.66 Se/B/F 49.61 8.79 8.76
SGS_20151211T155243_A002450.N02.00 2015-12-11 32TQR 32.00 F/A/B/Se 69.29 3.59 3.65
SGS_20151208T152443_A002407.N02.00 2015-12-08 32SNE 19.00 D 60.18 8.47 8.50
SGS_20160101T063159_A002744.N02.01 2016-01-01 55HGV 10.00 F/A 25.48 3.67 3.76
EPA_20160706T084949_A000877.N02.04 2015-08-23 34VCJ 11.36 F/A/B 46.20 6.06 6.09
EPA_20151202T202847_A002293.N02.00 2015-11-30 31TDF 1.00 B/Se 63.70 2.62 2.70
EPA_20160720T202438_A000648.N02.04 2015-08-07 33TXF 0.37 A/BS 27.71 9.04 9.07
SGS_20160217T201717_A003425.N02.01 2016-02-17 19NHC 8.01 F 29.73 5.47 5.52

a According to the Quality_Indicators_Info into the metadata file of the granule.
b A= agriculture, B= built-up, BS= bare soil, D=desert, F= forest, S= snow, Se= sea.

Fig. 1. Geographical distribution of selected evaluation sites.
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0.490 μm) and SWIR spectral bands (Band 10 at 1.375 μm jointly with
Band 11 at 1.610 μm or Band 12 at 2.190 μm). All the considered bands
are resampled at the same spatial resolution (60m) by a radiometric
interpolation.

The L1C algorithm detects dense and cirrus clouds differently:

2.1.1. Dense cloud detection
A first threshold is applied on the blue spectral region B2 (0.490 μm)

where dense clouds have a high reflectance. To avoid confusion be-
tween snow and clouds, SWIR channels B11 (1.610 μm) and B12
(2.190 μm) are also used because snow has a low reflectance at these
wavelengths.

Since ice clouds and snows have both a low reflectance in the bands
B11 and B12, an additional threshold on B10 (1.375 μm) is applied to
include high altitude ice clouds eventually discarded by the previous
SWIR thresholds (cirrus are not included at this step because they are
transparent at Band 2 wavelengths).

2.1.2. Cirrus cloud detection
Band 2 and Band 10 are used because cirrus generally have low

reflectance in the blue band (0.490 μm) and high reflectance in the
SWIR band at 1.610 μm (Band 10 corresponds to a high atmospheric
absorption band and only high altitude clouds are detected).

To limit false detections (due to high reflectance in the blue or due
to the fact that clouds are not spectrally registered), the following filters
using morphology-based operations are applied on both dense and
cirrus masks:

• erosion, to remove isolated pixels;

• dilatation, to fill the gap and extend clouds.

The morphology operation is applied to the opaque and the cirrus
cloud mask separately. The precise size of the neighboring pixels in-
volved in dilation and erosion is taken from the associated GIPP. After
morphology operations, if a pixel is classified both dense and cirrus, the
dense cloud mask prevails.

Finally, the cloud mask is set to three values:

• 0 is a cloud-free pixel;

• 1 is a dense cloud pixel;

• 2 is a cirrus cloud pixel.

If measurements are not available in one or more bands needed to
calculate the cloud mask, the value is set to NODATA. Statistical in-
formation on the percentage of opaque and cirrus cloud pixels is in-
cluded in the metafile.

2.2. Auxiliary data

In order to evaluate the influence of the background (water/land)
on the cloud detection performance, we used land/water masks derived
from cloud-free Sentinel-2 tiles acquired in different dates and corre-
sponding to the analyzed area (same UTM zone). The water mask was
obtained by applying an upper threshold to B12 as the SWIR values for
water are generally lower than those of land surfaces (Mishra and
Prasad, 2015).

Thresholds were selected scene by scene. False positive results, i.e.,
pixels which were not from the water class such as some roofs, were
manually removed. The land mask was obtained as complementary to
the water mask.

Moreover, to evaluate the possible prevalence of specific land covers
under misdetected clouds, we used the Climate Change Initiative Land

Cover (CCI-LC) map by ESA (http://maps.elie.ucl.ac.be/CCI/viewer/
download.php, last access 25/01/2018). This is a global LC map at
300m derived from MERIS and SPOT-VGT data (ESA CCI LC project,
2016).

The map includes two different Levels: i) Level 1, containing in-
formation available at global scale; ii) Level 2, containing information
at regional scale, where available. The map is also characterized by a
set of quality flags.

We chose to adopt the CCI-LC 2010 map at Level 1 because it is
globally consistent and available for all the case studies analyzed in this
paper. For our purposes, we grouped the original 22 land cover classes
into 7 macro-classes as follows: Cropland, Forest, Sparse Vegetation,
Bare Soils, Water, Snow and Ice, Urban areas.

3. Method

To evaluate the reliability of the L1C cloud mask product, we firstly
generated reference masks for each tile/granule and then compared
them with the Sentinel-2 product.

To establish if a satellite image pixel is cloudy or free of clouds is not a
simple matter. Usually the involvement of a trained expert is recognized as a
key element to have confidence in the quality of cloud masks. Often experts
manually perform cloud masks used for validating cloud cover algorithms.
The U.S. Geological Survey currently distributes different cloud validation
mask datasets manually derived from the Landsat data (Foga et al., 2017;
Hughes and Hayes, 2014; M.J. Hughes, 2016; Scaramuzza et al., 2012,
2016; Scaramuzza and Dwyer, 2016. Data available at the following links:
https://landsat.usgs.gov/landsat-7-cloud-cover-assessment-validation-data;
https://landsat.usgs.gov/sparcs; https://landsat.usgs.gov/landsat-8-cloud-
cover-assessment-validation-data. Last access 25/01/2018).

The reference cloud masks used in this work were generated by
applying spectral techniques supervised by a trained expert backed up
by support data. Such a supervised approach is expected to give a better
performance than a truly automatic technique.

3.1. Reference cloud masks generation

The methodology designed for generating the reference cloud masks
is based on an approach that considers cloud masking as a particular
case of object-identification by band thresholding. Out of automatic
processing chains, it represents one of the widely applied cloud detec-
tion method because of the simplicity of the algorithms, the fast op-
eration, and the high reliability (see, e.g., Hagolle et al., 2010; Jedlovec
et al., 2008; Zhu et al., 2015).

The adopted band thresholding roughly follows the approach of L1C
product chain by considering Sentinel-2 Band 2 (0.490 μm) and Band
10 (1.375 μm) separately; for our purpose the thresholds are locally
tuned to refine the cloud identification.

In particular, the blue spectral region of Band 2 is used to identify
dense cloud pixels that show high brightness in that spectral region.
This band is downsampled with an average filter at 60m following L1C
processing chain.

In Fig. 2 the spectral signature of typical opaque clouds (red stars) is
compared with the signatures of different types of land cover (see the
high reflectance values in VIS bands 1–4). Cirrus signature roughly
follows the spectral profile of the background, water in this case. The
high atmospheric adsorption of SWIR Band 10 is utilized to detect cirrus
clouds, which have a comparable high reflectance at that wavelength
(Hollstein et al., 2016), whereas only very low values are shown for the
other classes (see orange stars at 1.375 μm - B10 in Fig. 2 and in par-
ticular the magnified panel 6n).

The combination of the two bands (Band 2 and Band 10) was used
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for the detection of high-altitude, cold, and wispy opaque clouds that
are transparent (with low reflectance) in the blue spectral region and
show quite high reflectance at 1.375 μm (Acharya and Yang, 2015; Bo-
Cai Gao et al., 2002; Gao, 2000; Gao et al., 1998; Gao and Li, 2017).

Cloud detection by thresholding a spectral band is primarily based
on the evaluation of the grey-level histograms of each band to de-
termine a reflectance threshold (in our application TOA reflectance
value) which separates the histogram portion of the cloudy pixels from
the cloud-free one (Bley and Deneke, 2013). Such a selection is gen-
erally scene-dependent due to the high variability of atmospheric
conditions, clouds, and surface target characteristics. Fig. 3 shows the

variability of B10 signal distribution for the selected granules (tiles).
Cirrus clouds are usually found in the upper atmosphere and are

composed of irregular ice crystals that can be less opaque than non-
cirrus clouds at reflective wavelengths but can scatter and absorb ra-
diation significantly (Kovalskyy and Roy, 2015 and references therein).

The signal received by the 1.375 μm band is absorbed by atmo-
sphere, particularly by water vapor, therefore targets at surface appear
dark (low B10 values) in a conventional greyscale image. On the con-
trary, since cirrus are located at higher altitude (the path-length ra-
diation is shorter and the atmosphere is less absorbent), their signal is
detectable and they appear bright in B10 (high values). Such a signal

Fig. 2. Example of typical cloud signatures (dense/opaque red stars, cirrus orange stars) compared with the signatures of different land cover types selected on the
Spanish sites (Granule 31TDF) (a-b). The profiles correspond to the pins located in the large image and magnified on the small panels: c) cirrus cloud; d) opaque
cloud; e) crop; f) forest; g) water; h) build-up; i) open soil. As the spectrum view (l) shows, opaque clouds have the highest reflectance in VIS region, included in B2
utilized for their detection (m). Cirrus clouds have a signature similar to that of the water in background and the highest response in SWIR 1.375 μm - B10 (n). (dl in
spectral profiles is for dimensionless TOA - Top Of Atmosphere - reflectances multiplied by 10,000). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

R. Coluzzi et al. Remote Sensing of Environment 217 (2018) 426–443

430



strongly depends on the absorption and the scattering properties of
cirrus clouds (optical depth, single scattering albedo, and phase func-
tion (Meyer et al., 2004)) as well as the water vapor absorption above,
within, and below the cirrus clouds. Therefore, to a first approximation
the threshold value for separating clouds from cloud-free pixels was
defined scene by scene by selecting the TOA reflectance value that best
marks the upper distribution tail corresponding to the areas visually
identified as cloudy.

To verify and refine the histogram-based threshold, we adopted a
visual interpretation method based on single band (B2, B10) and ex-
amination of others bands and image composites. We basically used the
classical natural color composite (B4B3B2) as well as the B2B11B12
color composite that is useful to display snow and to distinguish it from
clouds (Hollstein et al., 2016; Sun et al., 2016).

Radiometric enhancement filters (e.g., adaptive, gaussian, equal-
ization) were applied to single channel or band composites to better
visualize the cloud presence in the image. Consequently, the threshold
on B2 or B10 was tuned to obtain the best overlap between the visua-
lized clouds and the provisional cloud mask (optimal threshold iden-
tification - best mask).

When a suitable threshold is defined, each TOA reflectance band is
converted in a binary map: background is set to zero (all values less
than the threshold); foreground is set to one (all reflectance values
higher than the threshold).

Then, in order to minimize the potential errors due to the inclusion
of cloud-free pixels in the masks, we also considered:

• Normalized Difference Vegetation Index (NDVI) map to refine the
mask of opaque clouds;

• Digital Elevation Model (DEM) to refine the mask of cirrus cloud.

To eliminate the presence of highly (and usually spatially isolated)
reflective pixels in the VIS sometimes identified as clouds, such as
bright bare soils and white buildings, the NDVI was calculated by using
Sentinel-2 Band8 (NIR) and Band4 (RED) (at 10m of spatial resolution

then resampled at 60m).
NDVI values range from −1 to +1. It represents one of the most

adopted index for surface analysis (Coluzzi et al., 2007; Pignatti et al.,
2015; Simoniello et al., 2015). Negative values of NDVI generally cor-
respond to water and dense clouds; values close to zero are related to
barren areas of rock, sand, and snow; medium, positive values represent
shrub and grassland; whereas high positive values indicate densely
vegetated and forest areas. As the NDVI values of bare soil and build-up
areas are higher than those of clouds, to eliminate highly reflective
pixels in B2, we applied a threshold on the NDVI maps. In particular
cases, where some doubtful bright patterns were retained, we observed
the persistence of such patterns in multitemporal images acquired
around the sensing date of the considered granule.

To remove false cirrus in B10 due to low water vapor content in
correspondence of areas at high altitude, a DEM was used. B10 detects
the radiation that is reflected by the high-altitude clouds and absorbed
by the water vapor closer to the ground; so, as reported above, cirrus
clouds appear largely brighter than other targets in presence of cloud-
free atmospheres that contain water vapor. The detection of cirrus
clouds using this channel critically depends on the total absorption of
solar radiation by water vapor. If the atmosphere is relatively dry (low
water vapor content), land surfaces at high altitude can appear bright as
well due to the short radiation path-length (Acharya and Yang, 2015).

These false cirrus clouds usually appear with shapes similar to the
orographic patterns and can be easily removed manually or by applying
a spatial filter that compares the potential cloud shapes with the con-
tourline extracted from the DEM.

Finally, we applied an erosion filter to remove isolated pixels from
the cloud masks; we also used an adaptive average filter (3× 3 box) to
replace values altered by cloud presence with estimations obtained on
the basis of the surrounding valid pixels.

At this point, two different cloud masks were generated: one starting
from Band 2 (generally associated to opaque clouds) and the other one
starting from Band 10 (generally associated to cirrus clouds), both
processed at 60m. As our procedure is principally focused on the

Fig. 3. Distribution of B10 signal (percentage of pixels) for the selected granules in Table 1 (B10 unit is dl= dimensionless Top Of Atmosphere (TOA) reflectances
multiplied by 10,000).
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generation of reliable cloud reference masks, more than on cloud
classification (requiring further data and analyses (Hollstein et al.,
2016; Zhu et al., 2015)), the two generated masks were jointed in one
bitmap (cloud/no-cloud). To compare the elaborated masks with Sen-
tinel-2 products, also the L1C masks were reclassified into a binary
map.

Procedures applied to generate the reference masks are synthesized
in Fig. 4.

3.2. Accuracy

According to a widely adopted practice (Foody, 2002; Liu et al.,
2007), we evaluated the accuracy of the L1C cloud masks for each test-
site by overlaying them with the reference masks, thereby obtaining
validation maps and the corresponding confusion matrices (error ma-
trices).

The validation map clearly emphasizes the areas of agreement and
disagreement. In particular, we classified four categories: 1) True
Positive (TP), i.e., agreements between cloudy pixels 2) True Negative
(TN), i.e., agreements between no-cloudy pixels 3) False Positive (FP),
i.e., disagreements No Clouds/Clouds (no-cloudy pixels in the reference
mask, cloudy pixels in the L1C product) 4) False Negative (FN), i.e.,
disagreements Clouds/No Clouds (cloudy pixels in the reference mask,
no-cloudy pixels in the L1C product).

From the confusion matrix, we estimated the overall accuracy, the
omission and commission errors and the Cohen's Kappa coefficient.

The overall accuracy (A) indicates the ratio between the number of
pixels correctly classified and the total number of pixels. It represents a
basic estimation of similarity between the two masks and ranges from 0
(absence of agreement) to 100 (total agreement).

The user's accuracy (UA) is the ratio between TP pixels and the sum
of TP and FP pixels. It is directly related to the commission error (CE),
i.e., CE(%)=100%−UA(%), which represents the percentage of cloud
pixels in the L1C cloud mask which are falsely classified

(overestimation). The producer's accuracy (PA) is the ratio between TP
pixels and the sum of TP and FN pixels. It is directly related to the
omission error (OE), i.e., OE(%)=100%− PA(%), which describes the
percentage of the cloud pixels in the reference mask that have been
omitted in the L1C cloud mask (underestimation).

The kappa coefficient (K) (Congalton, 1991) provides an additional
statistical measure of the agreement between the two cloud masks. K
includes off-diagonal elements also by taking into account the com-
mission and omission errors. Therefore, by including also information
on these errors, it represents a more realistic and reliable indication
about the probability that a pixel is correctly labeled. K varies from 0 to
1; the higher the values of the kappa coefficient, the higher the
agreement between the reference and L1C cloud mask.

3.3. Measure of cloud fragmentation

To measure the degree of cloud fragmentation, we adopted the ef-
fective mesh size index (meff). It is borrowed from landscape ecology
concepts (Ingegnoli, 2003), i.e., the study of the pattern and interaction
among ecosystems within a region of interest (Clark, 2010) and is
generally applied to quantify fragmentation processes related to land-
scape configuration. The effective mesh size is based on the probability
that two points randomly chosen within the examined area are con-
nected, i.e., are located in the same patch (Jaeger et al., 2007). This
index is widely adopted as a fragmentation measure in different con-
texts (natural and anthropogenic environments) and scales (from local
to continental) see, e.g., (European Environment Agency and FOEN,
2011; Redon et al., 2014; Schmiedel and Culmsee, 2016).

The more fragmented the clouds, the lower the probability that the
two randomly chosen cloudy pixels will be connected, and the lower
the effective mesh size:

= + +…+ +…+m
A
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total
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2
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Fig. 4. Scheme of the procedure adopted to evaluate the cloud mask of Sentinel-2 L1C product.

R. Coluzzi et al. Remote Sensing of Environment 217 (2018) 426–443

432



where A1, …, An represent the patch sizes of a cloud numbered from 1
to n, and Atotal is the total area of the investigated region. The minimum
meff value is the ratio between the pixel and tile dimensions (only one
pixel is cloudy, absence of connection); whereas the upper limit is re-
presented by the tile dimension (the image is totally covered by clouds,
all the pixels are connected).

3.4. Utilized software platforms

Sentinel-2 data are analyzed using the Sentinel Application Platform
(SNAP) v4.0 (available at http://step.esa.int/main/download/).
Accuracy measures and complementary elaborations were implemented
in QGIS 2.18.3 (QGIS Development Team, 2017) and Fragstats 4.2 free
softwares (McGarigal et al., 2012).

4. Results and discussion

4.1. General performance of Level-1C cloud masks

A first comparison between the reference masks and the Sentinel-2
L1C cloud products shows a high variability of detected cloud coverage
among the images (Fig. 5), hereafter identified by the UTM zone re-
ported in Table 1. According to L1C products, the cloud cover percen-
tage for the selected scenes ranges from 1.0% (granule 31TDF) to 50.0%
(granule 33TVF) whereas for the reference masks it is comprised in the
range 5.8% (granule 31TDF) - 78.6% (granule 19NHC).

The percentage of cloud cover provided by L1C is lower than that
detected by reference masks in all the cases included in our sample, i.e.,
the Sentinel-2 mask underdetects the cloud coverage systematically.
The highest difference (> 70%) is obtained for the granule 19NHC. In
this image, corresponding to a portion of the Amazon rainforest, a high
percentage of the contaminated pixels is occupied by thin clouds. As for
the other tiles, this difference varies from 1,8% (granule 18TYL) up to
16,2% (granule 34VCJ).

The spatial distribution of misdetected pixels is shown in Fig. 6,
whose rows report the natural color composite B4B3B2, the Band 10
image, and the validation map classified as indicated in Section 3.2 for
each test-site. The validation maps (last column in Fig. 6) clearly show
the location of over- (green pixels) and under-detected (blue pixels)
cloud covers.

The image sequences highlight the relevance of multi-band ana-
lyses; for example, the test-site 32SNE appears almost clear in the RGB

composition (Fig. 6a) whereas the inspection of B10 (Fig. 6a′) shows
several cirrus clouds spread across a large part of the image. Con-
versely, in 33TVF (Fig. 6c-c′) and 19NHC (Fig. 6i-i′), several cirrus
clouds are present in the respective B10 images. No apparent opaque
clouds can be noticed in this band whereas these can be easily observed
in VIS composites: a large dense stratus in the center-right part of the
image for 33TVF and a diffused number of small white patches of a
spotted cumulus in the 19NHC image.

Moreover, in such images some product anomalies, already de-
scribed in the Sentinel-2 Data Quality (Clerc et al., 2017a), can be
noticed:

- the along-track striping due to the observation parallax effect be-
tween odd and even detectors, noticeable both in the natural composite
(mainly over sea) and in B10 (Fig. 6b, e, and Fig. 6d′, e′, h′);

- the across-track intra-detector noise pattern induced by the com-
pression noise on blind pixels used for dark signal correction (visible
mainly in Fig. 6d′ and h′).

As referred in the more recent Data Quality Report (Clerc et al.,
2017a, 2017b), a solution to filter out this noise has been identified and
its operational implementation is currently under study.

4.2. Performance dependency on environmental conditions

The performance of the L1C cloud mask algorithm, used as a binary
cloudy/non-cloudy classifier, was evaluated through the analysis of
accuracy metrics (Table 2) obtained from confusion matrices. All the
metrics identify the Amazonian rainforest 19NHC granule as the worst
case (A=29.44% and K=0.05). Such a granule appears to be an
outlier in the statistics of our test sample since it holds a large number
of opaque clouds, which are sparse and different in size, jointly with
diffused cirrus clouds, which appear largely underestimated in the
Sentinel-2 mask (Fig. 6i-i″). Complexity and variability in cloud types
jointly with a high content of water vapor (mean TCWV ~90 kg/m2)
seem to mislead the L1C detection in rainforest environments
(Kovalskyy and Roy, 2015; Verhegghen et al., 2016).

For the other sites the overall accuracy (A) ranges from 84.25% to
97.44%. The lowest value, corresponding to a north-European granule
(34VCJ, Fig. 6g″), is due to the massive presence of ragged and wispy
clouds that are largely classified as free by the L1C product. The best
overall accuracy is instead associated to a granule of Mediterranean
environment (granule 33TXF, Fig. 6e″), combining portions of opaque
and cirrus clouds. As it is evident in the validation map, for such a

Fig. 5. Percentage of cloudy pixels in the Sentinel-2 L1C cloud product and the reference mask for the investigated granules (see Table 1).
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32SNE S2A_OPER_MSI_L1C_TL_ SGS_20151208T152443_A002407.N02.00

55HGV S2A_OPER_MSI_L1C_TL_SGS_20160101T063159_A002744.N02.01

33TVF S2A_OPER_MSI_L1C_TL_SGS_20151225T153139_A002650N02.01

32TQR S2A_OPER_MSI_L1C_TL_ SGS_20151211T155243_A002450.N02.00

(b) (b’) (b’’)

(c) (c’) (c’’)

(d) (d’’)(d’)

Fig. 6. Images of the investigated test-sites: natural color composite B4B3B2 (left panels), Band 10 (middle panels), and the validation maps (right panels). Natural
composite and B10 show up dense and cirrus clouds. The validation map highlights pixels correctly classified by L1C cloud mask (red), undetected clouds (blue), and
overestimated clouds (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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33TXF S2A_OPER_MSI_L1C_TL_EPA_20160720T202438_A000648.N02.04

18TYL S2A_OPER_MSI_L1C_TL_MTI_20160306T224020_A003683.N02.01

34VCJ S2A_OPER_MSI_L1C_TL_EPA_20160706T084949_A000877.N02.04

31TDF S2A_OPER_MSI_L1C_TL_EPA_20151202T202847_A002293.N02.00

Fig. 6. (continued)
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granule the cloudy area is relatively small and the good overall accu-
racy comes from the correct classification of non-cloudy pixels. If we
consider just the fraction of correctly classified clouds (red), this is
largely smaller than the undetected cloud portion (blue) and de-
termines very high omission errors (87%) and low K (0.22).

According to the K values, the best L1C performance is obtained for
a granule of the central Italian Apennines (33TVF, Fig. 6c″) where thin
cirrus and large dense clouds coexist.

Only four of the nine test-sites show K values higher than 0.80; we
found the lower the K values, the higher the omission errors
(R2= 0.95), which range from about 4% (granule 33TVF, Fig. 6c″) to
about 90% (granule 19NHC, Fig. 6i″). Conversely, commission errors
have no significant influence on K coefficient (R2= 0.04 for linearity).
Therefore, the performance of the L1C cloud mask is mostly determined
by undetected clouds.

To evaluate potential dependency of the L1C underestimation on
the surface background, we evaluated the omission errors over water
and land (U-water and U-land in Table 2) by computing them under the
land/water mask described in Section 2.2. The values estimated for the
different tiles are significantly variable, however the values averaged
over the tiles containing both the backgrounds are quite comparable
(34,22% for water and 42.56% for land). Moreover, on the basis of the
CCI-LC map, for each tile, we evaluated the distribution of land covers
to determine the prevalent class in the background of misdetected
clouds. No specific land cover appeared to dominate in the dataset, as a
likely cause of misdetection, not even bright surfaces. We did not find

those misclassification errors due to white buildings reported in some
S2 data quality reports (Clerc et al., 2015). Similarly, no relationship
was found for illumination (SZA solar zenith angle) and observation
geometry (SVA satellite view angle).

Among the test sites significantly affected by cloud overestimation,
the 32TQR granule (Fig. 6d-d″) represents the most relevant case. This
includes very heterogeneous land covers located within a wide eleva-
tion range (from the sea level to above 1800m a.s.l.). For such a tile,
the L1C mask shows the highest cloud overestimation (CE 8.5%) due to
the appearance of false cirrus clouds located in the upper-left side of the
granule in correspondence of mountain areas. The B2B11B12 color
composite was used to exclude the presence of snow on the Italian Alpes
where snowfalls are frequent in the acquisition season (sensing date 11
December 2015); a DEM of the area showed that the false cloud for-
mations were located at an elevation higher than 1000m and their
shape strictly followed orographic patterns. In such a case, the L1C
overestimation was induced by high TOA reflectance values of surface
targets in Band 10 due to particularly dry atmospheric conditions
(TCWV between 2.5 and 3.5 kg/m2) and to the consequent low ab-
sorption of reflected radiation.

4.3. Performance dependency on cloud type and structure

According to the results illustrated above, the L1C cloud mask
product principally underestimates the actual presence of clouds within
the selected scenes. A detailed visual assessment of the validation maps

(i’’)

19NHC S2A_OPER_MSI_L1C_TL_SGS_20160217T201717_A003425.N02.01

(i) (i’)

Fig. 6. (continued)

Table 2
Accuracy metrics of L1C cloud mask products. A overall accuracy, CE commission errors (overestimation), OE omission errors (underestimation), K Kappa coefficient;
U-Water and U-Land percentage of undetected clouds over sea and over land per total reference cloudy pixels over water and over land, respectively; meff effective
mesh size index; OEbuffer omission error for cloud masks with an added buffer (Section 4.4).

UTM zone A(%) CE(%) OE(%) K U-Water (%) U-Land (%) meff (ha) OE(%)buffer

33TVF 96.15 3.02 4.18 0.92 1.57 3.68 166,829 0.27
18TYL 94.54 2.98 12.28 0.88 10.44 47.22 114,575 0.31
32TQR 92.52 8.58 12.34 0.84 6.66 18.72 153,471 0.51
32SNE 94.64 0.04 18.98 0.86 – 18.98 90,440 0.00
55HGV 93.9 0.96 35.08 0.75 61.54 34.89 8453 3.59
34VCJ 84.25 0.5 56.88 0.52 52.43 81.64 68,481 9.84
31TDF 95.75 0.52 72.51 0.42 72.66 69.2 300 24.86
33TXF 97.44 4.82 87.00 0.22 – 87 833 0.00
19NHC 29.44 0.73 89.69 0.05 – 89.69 732,814 11.34
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reveals that the majority of the undetected pixels are located around the
core of the clouds, in the transition zone (buffer) between thick cloud
pixels (completely cloudy) and pixels under clear atmosphere (com-
pletely cloud-free). This is the case of 6 of the 9 test-sites: 32SNE
(Fig. 6a″), 55HGV (Fig. 6b″), 33TVF (Fig. 6c″), 32TQR (Fig. 6d″), 18TYL
(Fig. 6f″), and 34VCJ granules (Fig. 6g″). The visual examination also
shows that the lowest values of K (highest omission errors) mainly
correspond to scenes with a large number of small and patched clouds,
such as in 31TDF (Fig. 6h-h″) with K=0.42 and 19NHC (Fig. 6i-i″)
with K=0.05.

The analysis of the fragmentation index (Table 2) shows that
omission errors are inversely related to the cloud mesh size (R2= 0.73,
standard deviation=20); low accuracy values are associated to low
values of the meff index, i.e., to the presence of highly unconnected
cloudy pixels. The complexity of error sources for the granule 19NHC is
further confirmed since both meff and OE are the highest. As for the
other tiles, underdetection is likely due to the many small, generally
thin, and spectrally fuzzy fragments usually observed in the transition
zone between the cloud core and the cloud-free area. The OE therefore
is low when the cloud core is large whereas the value of meff is high, as
it reveals the increase in connectivity due to the presence of such a core.

The differences between the L1C and the reference cloud masks are
confirmed to be strongly dependent on cloud fragmentation (R2= 0.76,
standard deviation=17): the lower the clouds fragmentation, the
better the L1C performance.

If we exclude the above-mentioned case due to dry atmosphere

conditions, also overestimation is related to cloud fragmentation for the
presence of holes/gaps inside the main cloud body (see granules 33TVF,
18TYL, 32TQR). The profile of the transects in Fig. 7 clearly shows that
the values of B2 and B10 recorded for pixels inside the hole (over-
detected) are similar to those bordering the open hole, which is instead
correctly detected as cloud-free. The configuration of such a false de-
tection seems to suggest that the dilation filter adopted into the L1C
processing chain overfills the observed gap.

For land surface applications, such a false detection is few sig-
nificant because it limits the number of valid pixels useful for the
analysis but does not alter the results obtained for cloud-free areas.
Differently, underestimation can severely affect land surface analyses.
To assure highly confident cloud-free pixels, also cloud buffers/edges
should be labeled as cloud since they have altered reflectance values
with respect to those of the neighboring pixels not contaminated by
clouds. The examples in Fig. 8 clearly demonstrate the presence of
undetected cirrus, plainly evident in the B10 profiles, and its impact on
VNIR bands both over sea and over land. The alterations in TOA re-
flectance values due to cirrus clouds are particularly visible in B8
(Fig. 8m) and B4 (Fig. 8n) over sea.

Fig. 9 shows the spectral signatures of bright bare soil and vegeta-
tion in actual cloud-free areas and in areas covered by undetected
clouds. The high incidence of undetected clouds found in our analyses is
particularly relevant considering the efforts of the ESA Sentinel-2 Core
Segments to minimize underdetections (Clerc et al., 2015). Omitted
cirrus pixels in L1C masks can alter the estimation of land surface

Fig. 7. Example of overdetected cloudy pixels in a hole inside the main cloud body. Natural color composite of the 32TQR granule (a), detail of validation map (b),
transects on B10 (c), and B2 (d) and relative profiles for T1 (e, f) and T2 (g, h).
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parameters, such as NDVI, chlorophyll a (Cha), dissolved organic
matter (CDOM), NDWI (Normalized Difference Water Index), providing
misleading results (Gao and Li, 2017; Du et al., 2016; Toming et al.,
2016; Gao, 2000).

4.4. Suggestions/recommendations for the remote sensing community

This section provides some suggestions for users interested in the
analysis of surface parameters, summarizing recommendations from
our work and ESA quality assessments (Clerc et al., 2015, 2017a,

2017b; Gascon et al., 2017). They can be considered valid until cor-
rections in the cloud mask processing chain will be implemented (at the
current processing baselines, N02.06, no modifications involved the
cloud mask processing steps (Clerc et al., 2018a)).

The Sentinel-2 Level 1C cloud mask product exhibits the worst
performances in the following cases:

- in correspondence of snowy surfaces (wrongly identified as cirrus/
opaque clouds);

- in correspondence of bright surfaces such as sand and white
buildings (sometimes identified as opaque clouds);

Fig. 8. Effects of cirrus on VNIR reflectances. Transects over land (T1) and sea (T2) are drawn on the following images: natural color composite (B4B3B2) (a, f), B10
(b, g), and B2 (c, h) images of the 33TXF and 31TDF granules. Reflectance profiles of T1 and T2 are shown in: (d, i) B10, (e, l) B2, (n) B4, and (m) B8. As evident in
B10 image, L1C cloud mask (greenish brown) detected only the cirrus core corresponding to higher values (green box) in B10 profile (d). In the same transect portion
also B2 values are high (e). For the portion of undetected cirrus (red box), B2 values are lower than the core values, but anyway they are higher than those of the
cloud-free areas. Similar effects can be seen for the transect over sea. The impact of the cirrus is even higher in B4 and B8. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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- over high elevation surfaces with particular dry atmospheric
condition (sometimes confused as cirrus clouds);

- in correspondence of cloud boundaries/buffers and cirrus clouds.
To overpass these issues we suggest:
- to detect the presence of snow into the images by using, for ex-

ample, the B2B11B12 as RGB composition;
- to exclude the presence in the cloud mask of highly reflective

pixels in the VIS by using the NDVI and, if some doubtful bright pat-
terns are retained, to observe the persistence of such patterns in

multitemporal images acquired around the sensing date of the con-
sidered granule;

- to verify the presence of false cirrus clouds in correspondence of
high altitude lands by checking values of elevation and the water vapor
content (Sentinel-2 product includes also the DEM and the TCWV of the
area); in these cases DEM can be used to look at surface morphology
because generally the L1C clouds follows orographic patterns, therefore
false clouds can be easily removed manually or by applying a spatial
filter that compares the shapes of potential clouds with the contourlines

Fig. 9. Example of spectral signatures for cloud-free and undetected cloudy surfaces belonging to the same land cover types: bare soil Pin2a and Pin2b, and
vegetation Pin 3a and Pin 3b. Pins over natural color composite (B4B3B2) (a) and Band 10 (b) of 33TXF granule (L1C cloud mask in greenish brown); Top Of
Atmosphere (TOA) reflectance for the considered pins (c); magnified image in correspondence of Band 10 values (d). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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extracted from the DEM;
- to label cloud buffers as cloudy because of the high probability of

misclassification of these areas.
In case of large data sets, an automatic approach, such as the F-mask

(Zhu et al., 2015) or the multitemporal cloud detection (MTCD) method
(Hagolle et al., 2010), would be more helpful. If the application is
possible, the simplified hybrid method based on dark pixel and MVC
NDVI (Ramoino et al., 2017) requires a lower computation time.
Anyway, a prudential buffer on opaque L1C cloud mask and/or a fixed
threshold on B10 could limit misleading interpretations until a new
operational implementation of Sentinel-2 Level 1C cloud mask product
will be available.

The threshold on B10 could be fixed by selecting the TOA re-
flectance value that better discriminates cloud pixels from no-cloud
pixels by simply trimming the B10 distributions. The extension of the
buffer for a single image could be estimated by overlaying the L1C
opaque cloud mask with the B4B3B2 RGB composition (evaluable in
SNAP or other GIS environments). The cloudy area in the RGB com-
position which exceeds the L1C mask provides a reasonable visualiza-
tion of the undetected margins; the maximum extent of these margins
could be used to define the buffer width. This prudential masking
strongly reduces the OE, possibly clearing the error, but also implies the
removal of a large amount of cloud-free pixels.

A softer buffer masking could be implemented to improve the mask
performance limiting the increase in CE. For our data set, a 1,5 km
buffer (the median value of the maximum extents estimated for tile)
and a threshold on B10 set to 35 dl (the minimum threshold over the
database) allow a mean reduction in OE of about 90% (minimum re-
duction of 67%, see OEbuffer in Table 2) with an average CE=20%.
Since this strategy aims to obtain high quality surface data, a relatively
high CE could be acceptable if this increase is associated to a net de-
crease of the number of underestimated pixels, which can severely af-
fect land surface analyses.

5. Conclusions

This study provides a first assessment of the Sentinel-2 Level 1C
cloud mask product in different biogeographic regions. The comparison
with reference masks, elaborated by integrating visual interpretations
of radiometric data and support information (NDVI, DEM), showed that

the L1C product is mostly working (average overall accuracy of 86.5%).
The L1C algorithm showed comparable performances both over water
and land, and our results do not point out any dependence of the error
probability on the different land covers in the background.

Nevertheless, the performance of L1C cloud masks is limited by a
non-negligible number of undetected clouds. The largest part of mis-
classified pixels was found on borders/buffers of cirrus and opaque
clouds. Most omission errors (up to ~87%) were strictly dependent on
the fragmentation level of the cloud structures, which was generally
determined by the presence of many small, thin, and spectrally fuzzy
fragments located in the transition zone between the cloud core and the
cloud-free area. The commission errors (up to ~5%), markedly lower
than the omission ones, were principally determined by the cloud
configuration, particularly in the presence of holes inside the main
cloud bodies. Altogether, cirrus clouds confirmed to be the most diffi-
cult to be correctly detected.

Two extreme environments in peculiar atmospheric conditions were
particularly critical for a correct detection. Complex clouds over rain-
forests and in the presence of high atmospheric water vapor content
determined the highest under-detection error (~89%); high mountain
orography patterns in dry atmosphere determined the highest over-
detection error (~8%).

In these two years, since the Sentinel-2 launch, great efforts were
implemented by the ESA and the Sentinel-2 community to provide high
level quality data, but further work is required to obtain consistent
environmental and climate information and to fully exploit the great
capability of the Sentinel-2 mission in operative chains.

In the meantime, we suggest carrying out preliminary analyses and
prudential actions for minimizing effects of residual clouds in surface
applications of Sentinel-2 Level 1-C data.
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Appendix A. Sentinel-2 spectral response functions

Table A.1
Central wavelength, bandwidth, and spatial resolution for the 13 spectral bands of the Sentinel-2.

Band Centre
Spectral 

width Spa�al
λ Δλ resolu�on
µm nm m

B1 0.443 20 60
B2 0.490 65 10
B3 0.560 35 10
B4 0.665 30 10
B5 0.705 15 20
B6 0.740 15 20
B7 0.783 20 20
B8 0.842 115 10

B8A 0.865 20 20
B9 0.945 20 60

B10 1.375 30 60
B11 1.610 90 20
B12 0.443 180 20
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Fig. A1. Sentinel-2A Spectral Response Functions, available before 19/12/2017 and used by the Ground Segment until 15/01/2018. The y-axis values represent the
average spectral response determined through ground-based testing of the Multi Spectral Instrument for each spectral band. Data are based on ground measurements
performed in the frame of the Assembly, Integration and Test (AIT) campaign of the MSI of the ESA.

Fig. A2. Sentinel-2A and Sentinel-2B Spectral Response Functions for Visible and NIR bands, available after 19/12/2017 and used by the Ground Segment as from
15/01/2018. The y-axis values represent the average spectral response determined through ground-based testing of the Multi Spectral Instrument for each spectral
band. Data are based on ground measurements performed in the frame of the Assembly, Integration and Test (AIT) campaign of the MSI of the ESA ((Clerc et al.,
2018b); (https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-
responses, last access: 24/01/2018).
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Fig. A3. Sentinel-2A and Sentinel-2B Spectral Response Functions for SWIR bands, available after 19/12/2017 and used by the Ground Segment as from 15/01/
2018. The y-axis values represent the average spectral response determined through ground-based testing of the Multi Spectral Instrument for each spectral band.
Data are based on ground measurements performed in the frame of the Assembly, Integration and Test (AIT) campaign of the MSI of the ESA ((Clerc et al., 2018b);
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-
responses, last access: 24/01/2018).
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