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A B S T R A C T   

Smart homes, connected through a network, can optimize the energy consumption and general load shape of 
their area. In this work, a blockchain-based smart solution is presented for demand-side management of resi-
dential buildings in a neighborhood to improve Peaks to Average Ratios (PAR) of power load, reduce energy 
consumption, and increase the thermal comfort of occupants by modeling heating, illumination, and appliance 
systems. For real-time power and temperature monitoring of the neighborhood, a transient numerical physical 
model has been developed. The simulator has been validated with data measured from a building in Northern 
Italy. Then, a neighborhood with 2,000 households has been modeled for different occupancy patterns, initial 
values, and boundary conditions. Two different control scenarios, namely basic and smart, have been considered. 
In the basic scenario, everything is managed by occupants except the boiler, which is controlled by the indoor 
temperature of the home. Instead, in the smart scenario, a blockchain-based network has been introduced for 
buildings to exchange a parameter called the Probability of the Next Hour (PNH). Ethereum Solidity has been 
deployed for smart contract development in the blockchain. The results show that using blockchain-connected 
smart controllers aimed at demand-side management can improve PAR, comfort level, and energy efficiency 
of buildings, which can bring about CO2 reduction on an urban and even global scale.   

1. Introduction 

The smart city concept means using electronic methods, sensors, and 
devices to enhance the citizens’ quality of life. Achieving the highest 
efficiency and optimizing energy consumption are the main objectives of 
smart cities from the energy point of view (Boukhechba et al., 2017; 
Calvillo et al., 2016). Buildings are one of the primary energy consumers 
in Europe accounting for 40 percent of total use based on the ODYSEE 
and MURE databases (Schmidt & Åhlund, 2018). Energy consumption in 
most of the European countries is higher in winter compared to summer 
(Fateh, Borelli, Spoladore, & Devia, 2019). Reducing about 20% of en-
ergy consumption can eliminate about 50% CO2 emission (Fateh, Bor-
elli, Weinläder, & Devia, 2019). Therefore, finding a smart solution to 
reduce the energy consumption of existing buildings without interven-
tion on the building envelope can help to reach the target on an urban 
and even global scale. 

A network of connected smart homes can reform the energy load 

shape and decrease the energy consumption on different scales based on 
the size of the network. On the other hand, conventional methods of 
Demand-Side Management (DSM) such as Demand Response (DR), 
which is a motivational measure to reduce the end-users’ energy con-
sumptions, is receiving the same signal to shift the time of their appli-
ance consumption to all consumers, so there is a risk of shifting to the 
same time and making an even higher peak at another time (Chang et al., 
2013; Y Li et al., 2012; Roche et al., 2015; Roozbehani et al., 2012). 
Overall, by adopting DSM techniques utility companies consider 
improving energy efficiency, reliability, and power quality of homes 
(Lokeshgupta & Sivasubramani, 2019). In short, the smart solution can 
predict behaviors to prevent undesirable conditions. A Neighborhood 
Area Network (NAN) is a concept that smart homes communicate 
through a network to coordinate their actions to manage energy in a 
neighborhood area (Celik et al., 2017). In a recent review study by 
Groppi et al. (2021), it was found that using sector coupling and DSM 
solutions in smart energy islands, lead to reduction of surplus electricity 
consumption and improvement of the grid ability to host variable 
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renewable energy sources. There are different approaches for manage-
ment and coordination of energy resources in smart buildings such as 
game theory (Khalid & Javaid, 2019), heuristics (Dao et al., 2019), ge-
netic algorithms (Sharifi & Maghouli, 2019), stochastic predictive 
models (Salehpour et al., 2021; Zhang et al., 2018) and optimization 
techniques (Hossain et al., 2021; Yahia & Pradhan, 2020). Further de-
tails about the development and optimization algorithm of DSM can be 
found in a recent review by Sharda et al. (2021). 

Based on communication and control architectures of the system, 
there are two different types of networks: centralized and decentralized. 
In centralized coordination, there is a central operator device that has 
access to all data and makes decisions for home consumptions. One 
drawback of centralized coordination is that it is not scalable (Celik 
et al., 2017; Dao et al., 2019). Moreover, in centralized management 
systems, owing to the lack of sufficient efficiency in the presence of 
distributed generation resources, competitive mechanisms in the mar-
ket, and exposing the information under the centralized operation, many 
researchers have been fascinated by the development of decentralized 
systems (Boudoudouh & Maâroufi, 2018; L. Li & Yu, 2020; Nasiri et al., 
2020). It seems the most reliable architecture belongs to decentralized 
management (Harmouch et al., 2018). In decentralized coordination, 
devices exchange their data without any central operator, which leads to 

private ownership, and what is more due to their flexibility, plug and 
play features make them popular in applications (Salehpour et al., 
2021). There are three different types of decentralized network: fully 
independent, partially independent, and fully dependent. 

In the fully dependent structure, smart homes communicate with a 
central entity without sharing any data with other homes. In this ar-
chitecture, the smart homes decide, while in the centralized model, the 
decisions are taken by a central entity. Mediwaththe et al. (2016) 
developed an energy trading system to manage demand-side load in a 
NAN. The users can trade their surplus energy with the grid and the 
community energy storage devices. They used a fully dependent 
decentralized model for exchange between users. Their model can pro-
vide peak load leveling for the grid and can benefit users financially. 

In that of partially independent, end-users communicate with each 
other and the central entity. Deng et al. (2014) formulated a partially 
independent game, which users can interact with, for residential energy 
consumption scheduling. Their results showed that their proposed 
approach could shift the peak-hour demand, and it minimizes the 
peak-to-average ratio (PAR). They also investigated the scalability of 
their model and the impact of the user number, with a positive assess-
ment. The computation time resulted dependent on the user who con-
verges slowest, instead of the summation of computation time of all 

Nomenclatures 

Symbols 
Ė Energy Rate, W 
m Mass, kg 
ṁ Mass Flow Rate, kg/s 
ρ Density, kg/m3 

t Time, s 
h Time, h 
C Specific Heat Capacity, J/kgK 
T Temperature, K 
T Mean Temperature, K 
T0 The temperature in the Previous Timestep, K 
k Thermal Conductivity, W/mK 
U Thermal Transmittance, W/m2K 
R Thermal Resistance, m2K/W 
A Surface, m2 

d Thickness, m 
D Diameter, m 
r Radius, m 
L Length, m 
Nu Nusselt Number 
Re Reynolds Number 
Pr Prandtl Number 
Ra Rayleigh Number 
g Gravitational Acceleration, m/s2 

β Coefficient of Volume Expansion, 1/K 
ν Kinematic Viscosity, m2/s 
μ Dynamic Viscosity, kg/(m.s)
y Height, m 
α Thermal Diffusivity, m2/s 
n Number 
Ev Average Luminance Level, lux 
Ki Luminance Efficacy, lux/W 
wr Geometric Mean Sunrise Hour Angle, ∘ 

λ Latitude, rad 
δ Solar Declination, rad 
Γ Day Angle, rad 

Subscripts 
he Heating 
il Illumination 
b Boiler 
p Pipe 
r Radiator 
f Fluid 
wall Wall 
win Window 
i Inlet 
o Outlet 
in Inside 
out Outside 
indoor Indoor 
outdoor Outdoor 
a Ambient Air 
gap Window Gap 
oc Occupants 
ro Rooms 
dl Day Length 
sr Sunrise 
ss Sunset 
day Day of Year 
nom Nominal 
min Minimum 
max Maximum 

Abbreviations 
DSM Demand-Side Management 
DELM Dynamic Electrical Load Management 
DDSM Dynamic DSM 
DR Demand Response 
NAN Neighborhood Area Network 
PAR Peak to Average Ratio 
IoT Internet of Things 
PMV Predicted Mean Vote 
PPD Predicted Percentage of Dissatisfied 
PNH Probability of the Next Hour 
NONCE Number Only Used Once 
ID Identifier  
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users. It was also observed that the scalability grew linearly, not expo-
nentially, with the possibility of accommodating millions of users or 
even more on high-performance computers. 

In that of fully independent, consumers only interact with other 
homes located in their neighborhood, without the interference of any 
central entity. Chen et al. (2014) examined a DSM scenario. In their 
model, users try to minimize their energy costs by shifting their 
peak-time consumption. They formulated a game for users to compete 
in, minimizing their cost in a fully independent network. In their model, 
it is not necessary to exchange users’ private information. Harmouch 
et al. (2018) developed a decentralized system to manage energy for a 
single microgrid and microgrid cluster. They implemented a decentral-
ized multiagent energy management system to manage a microgrid 
cluster with a fault tolerance feature. Durillon et al. (2020) proposed a 
decentralized energy management program in a neighborhood to reduce 
grid peak, using three different scenarios to compare price, environ-
ment, and comfort factors of consumers. Croce et al. (2020) used an 
Overgrid of new decentralized load control, without any centralized 
control, which was able to forecast the demand of the aggregated power 
and make a virtual “community” for smart buildings, and, what is more, 
ensures minimum inconvenience for the end-users. 

Blockchain technology is a protocol used for parties to transfer data 
without a third party, called a decentralized system (Brilliantova & 
Thurner, 2018). It can be used to implement energy management (Noor 
et al., 2018). This technology was used for the first time in developing 
Bitcoin as a cryptocurrency (Nakamoto, 2008). After a while, by 
developing this technology, the newer versions, including Blockchain 
2.0, which enables smart contracts, and Blockchain 3.0, which brings a 
higher degree of autonomy, have emerged (Brilliantova & Thurner, 
2018). Blockchain is based on a distributed ledger, which is verified by 
consensus, is not owned by a central authority and all the parties have 
access to the data (Crosby et al., 2016; Underwood, 2016). In other 
words, blockchain is a data structure stored and encrypted in blocks 
located in distributed nodes, using consensus algorithms to define trust 
(Lu, 2019). 

Since blockchain is a distributed ledger of stored data with so many 
innovative features, it will be widely used to develop the Internet of 
Things (IoT), especially smart homes (Wang et al., 2019). Blockchain 
application in smart homes is different from a conventional Bitcoin 
blockchain (Makhdoom et al., 2019). In other words, Bitcoin blockchain 
which is the first version of the blockchain, due to lack of smart con-
tracts, cannot be used for smart homes. Dorri et al. (2017; 2016) pre-
sented a private and secure blockchain approach in which each smart 
home is equipped with a miner handling external communication to 
control, audit and use cloud storage. 

Recently there have been studies on using blockchain as distributed 
energy systems where consumers can exchange their energy directly. 
Mengelkamp et al., 2018 simulated a local energy market for 100 resi-
dential households. They used private blockchain to provide an energy 
trading platform. Pop et al. (2018) implemented the Ethereum block-
chain to collect energy consumption data of IoT smart metering devices. 
They showed that using blockchain-based distributed DSM at the smart 
grid level makes the demand response signal being followed highly ac-
curate while reducing the amount of convergence of energy flexibility. 
Mengelkamp et al. (2018) proposed a peer-to-peer microgrid energy 
market which consumers and prosumers can trade. They showed that 
the Brooklyn Microgrid almost satisfies the different market components 
studied. They also showed that blockchain technology is eligible to 
operate decentralized microgrid energy markets. Noor et al. (2018) used 
a game-theoretical approach for a DSM model using blockchain tech-
nology. Their proposed model can reduce the electrical grid PAR and 
smoothen the dips in the load profile, which are caused by supply con-
straints. They showed that blockchain could facilitate transactions by 
maintaining trust and transparency. It also improves the implementa-
tion of smart decentralized control and payment mechanisms. Li et al. 
(2019) studied energy DSM, including residential, commercial, and 

industrial sectors using peer-to-peer real-time energy markets. They 
implemented smart contracts to make a seamless, secure, and efficient 
distributed energy system. They showed that using blockchain can result 
in a significantly flattened schedule of grid electricity procurement. 
Wen et al. (2021) proposed a blockchain to enhance energy prices for 
demand-side management using demand response. They suggested a 
pseud digital identity to enhance users’ privacy. In their model, the data 
is stored in the block of a blockchain, which brings transparency, 
traceability, and tamper resistance. 

As expressed in the literature, using energy DSM methods can reduce 
the energy consumption of users in a neighborhood. One way is shifting 
energy consumption, which may lead to creating a peak at another time. 
Another solution is using a centralized operator for energy management, 
but this involves a lack of trust, security, and scalability due to the size of 
data. The alternative method is blockchain, which is a trustable decen-
tralized method for storing and accessing data. Table 1 shows the 
comparison of previous works for demand-side management. Many 
centralized and decentralized research projects have been carried out to 
reduce energy costs of users that lead to decrease the PAR of the load 
shape. Besides, there are few recent works implementing the blockchain 
network for energy cost reduction. What is more, there are few papers 
analyzing the thermal comfort and energy consumption reduction in a 
neighborhood. There is lack of work on implementing physical model-
ling of buildings equipped with real-time controllers connected through 
the blockchain network to directly control the indoor temperatures and 
appliance time to improve the PAR, energy consumption, and thermal 
comfort altogether. 

The novelty of this work mainly consists of combining physical dy-
namic modeling of energy demand in residential buildings with block-
chain to reduce energy consumption, decreasing the PAR of load shape 
and improving the thermal comfort altogether without intervention on 
the building envelope on an urban and even global scale. The heating 
system of each building is modeled physically to compute the heating 
energy consumptions and the thermal comforts. The illumination and 
appliance systems of buildings and occupancy patterns are modeled as 
well to calculate energy consumption. Then, a neighborhood of build-
ings is modeled in two scenarios to compare the results of PAR, energy 
consumption, and thermal comfort. A smart scenario is presented in 
which buildings are connected by a blockchain network to share the 
probability of use together. 

In summary, the main contributions of the current study compared to 
the previous literature review are:  

• Proposing and implementing a blockchain solution for real-time 
control of heating and appliance systems of buildings in a neigh-
borhood area 

• Presenting a smart scenario that improves the PAR, energy con-
sumption, and thermal comfort of the neighborhood area without 
considering energy pricing  

• Physical modeling of the heating system of buildings to consider the 
real-time thermal comfort of occupants  

• Directly controlling the indoor temperatures and appliance time to 
improve the energy usage of the neighborhood  

• Performing improvement in PAR, energy consumption, and thermal 
comfort by just controlling the temperature and time of use with the 
least equipment  

• Simulating the illumination system based on sunrise and sunset 
modeling 

This paper is arranged as follows: Section 2 presents the modeling of 
buildings and the neighborhood by considering heating, illumination, 
and appliance systems. What is more, the section introduces the block-
chain model and control methodology for demand-side management of 
buildings in a neighborhood area. Section 3 performs and analyzes the 
results obtained from the current study including validation, load, en-
ergy, and comfort comparisons, and scalability. Section 4 states the 
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conclusion. 

2. Modeling 

In the current study, a neighborhood of buildings is modeled to 
analyze the energy consumption of heating, illumination, and appliance 
systems. To model each building, a MATLAB code is developed to model 
the transient energy consumption of each system by considering thermal 
comfort measures and occupancy patterns. Each system can be regarded 
as a distinct one, controlled separately. Then, a blockchain smart con-
tract is developed by Solidity to control the energy consumption of the 
integrated buildings of a neighborhood. 

The heating system is simulated physically and generally, by 

modeling different components such as boilers, circulating water pipes, 
and radiators. The heating model is validated by the real data of a 
building. Next, to model the illumination system, the daylight hours are 
calculated, by modeling the sunrise and sunset hours of each day, by 
considering the occupancy patterns and daylight hours the energy 
consumption versus time. Then, in the appliance system, three shiftable 
“wet appliances”, including a washing machine, a tumble dryer, and a 
dishwasher are studied by modeling based on probability function and 
schedules. 

Finally, two different scenarios are designed, namely basic and 
smart, for control methodology to compare the result of energy con-
sumption, load shape, and thermal comfort for the neighborhood. In that 
of basic, there is no interaction between controllers inside the home, and 

Table 1 
Comparison of similar work in the scientific literature.  

Ref. Coordination Contributions PAR 
reduction 

Energy consumption 
reduction 

Comfort level 
increase 

Mohsenian-Rad et al. 
(2010) 

Partially independent 
decentralized  

• Minimizing energy cost and PAR in total load  
• Presenting a solution to prevent users from cheating and 

misleading 

14% - - 

Logenthiran et al. (2012) Centralized  • Presenting a generalized technique based on load shifting 18.3% - - 
Li et al. (2012) Fully dependent 

decentralized  
• Investigating the possibility of rebound peak from the 

optimal automated DR algorithm  
• Comparing multiple approaches to reduce the rebound 

peak 

19.4 - 33.9%. - - 

Niro et al. (2013) Centralized  • Modeling refrigerators thermodynamically to reduce peak 
demand, improving losses and voltage profiles 

21.4% and 
41.5% 

- - 

Chen et al. (2014) Fully independent 
decentralized  

• Implementing an instantaneous load billing scheme  
• Exchanging estimated information by users in a 

decentralized network  
• Developing a novel aggregative game to model users’ 

strategic behaviors 

30.31% - - 

Deng et al. (2014) Partially independent 
decentralized  

• Considering users’ interaction and the temporally coupled 
constraint 

• Transforming the coupled-constraint game into a decou-
pled one by dual decomposition 

19% - - 

Safdarian et al. (2016) Fully dependent 
decentralized  

• Solving the load reschedule problem non-sequentially by 
customers  

• Having separate objectives for different players 

16.8% - - 

Mediwaththe et. al (2016) Decentralized  • Developing a noncooperative dynamic repeated game 
• Investigating a day-ahead decentralized energy manage-

ment framework 

13.5% 10.5% - 

Javaid et al. (2017) Decentralized  • Proposing a Genetic BPSO algorithm to solve load 
management  

• Testing with the simulative consideration of an HEM 
system in Real-Time Pricing 

34% - - 

Mengelkamp et al., 2018 Blockchain  • Evaluating the blockchain network as an information 
system for microgrid energy markets  

• Presenting of the Brooklyn Microgrid  
• Implementing a private blockchain to sustain and operate a 

microgrid energy market 

- - - 

Lokeshgupta & 
Sivasubramani (2019) 

Centralized  • Implementing multi-objective home energy management 
with battery energy storage system  

• Including practical constraints of the controllable 
appliances and battery storage system  

• Comparing 6 scenarios with different possible operating 
conditions 

9% - - 

Li et al. (2019) Blockchain  • Implementing blockchain on the microgrid energy market 
considering renewable generation  

• Implementing proof of stake blockchain algorithm  
• Proposing a non-cooperative game to interact among 

various users 

- - - 

Durillon et al. (2020) Decentralized  • Implementing multi-objective residential energy 
management  

• Considering consumer profiles considering 3 different 
sensitivities  

• Effect of consumer sensitivities’ integration level in grid 
management 

23% and 
31% 

- 5.4% and 
12.7% 

Wen et al. (2021) Blockchain  • Adopting a noncooperative game to model buildings’ 
energy consumptions  

• Maintaining and managing without the trust of a third- 
party  

• Designing a blockchain-based energy optimization 
schedule law 

- - -  
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each controller works in islanded mode. On the other hand, in the smart 
scenario, each controller integrates with others to predict the probability 
of energy consumption in the neighborhood through the blockchain 
network, which is developed using Ethereum smart contracts. 

2.1. Heating system 

To simulate a heating plant, a transient general physical model 
containing boilers, circulating water pipes, and radiators, is developed 
by MATLAB. In the model, the boiler heats circulating water and pumps 
it to the radiators via pipes schematized in Fig. 1. As the figure shows, 
the model calculates temperatures and energy consumption during the 
time and shares the data with the controller for internal controlling and 
external data sharing. The following outlines the physical modeling of 
each heating component which can be used for different integration. 

By considering the boiler as a control volume with a specific mass 
and heat capacity containing a furnace for heating up, its energy equa-
tion is obtained as (Borelli et al., 2018): 

(mC)b
dTb

dt
= Ėhe + ṁf Cf

(
Tb,i − Tb,o

)
(1)  

where m, C, t, and T are mass, specific heat capacity, time, and tem-
perature, respectively. The subscripts b, f, i, and o are boiler, fluid, inlet, 
and outlet, respectively. It is worth noting that Tb indicates the bulk 
temperature of the boiler. Ėhe is the energy consumption rate of the 
heating system of a household. 

The pipe contains the circulating hot water and has thermal loss 
during transferring to the radiators or returning to the boiler. Therefore, 
its energy equation is (Borelli et al., 2018; Kolahan et al., 2020; Maadi 
et al., 2017): 

(mC)p
dTp

dt
= ṁf Cf

(
Tp,i − Tp,o

)
+ UpAp

(

Ta − Tp

)

(2)  

where U and A are the equivalent heat transfer coefficient and contact 
area, respectively. Subscripts p and a are pipe and the ambient, 
respectively. It should be mentioned that Tamb is the ambient setting 
which is in contact with the corresponding pipe. Occasionally, it can be 
considered as the indoor and outdoor temperatures corresponding to the 
surrounding ambient of the pipe. Also, Up and Ap, which are in Eq. (2), 
are pipe equivalent heat transfer coefficient and inside area of the pipe, 
respectively, derived as (Bergman et al., 2011): 

Up =
1

1
hp,in

+
rp,in ln(rp,out/rp,in)

kp
+

rp,in
hp,out rp,out

(3)  

Ap = 2πrp,inLp (4)  

where r, h, k, and L are the radius, convective heat transfer coefficient, 
thermal conductivity, and length of the pipe, respectively. Moreover, 
subscripts in and out are interior and exterior surfaces of the pipe, 
respectively. 

The interior forced heat transfer coefficient, hp,in, of the pipe can be 
derived from(Maadi, Sabzali, Kolahan, & Wood, 2020): 

hp,in =
Nup,inkf

Dp,in
(5)  

where Nup,in is the Nusselt Number, which can be calculated in the cir-
cular pipe using (Maadi et al., 2017; Qiu et al., 2015): 

Nup,in = 4.36 +

0.086
(

Ref Prf Dp,in
Lp

)1.33

1 + Prf

(
Ref Dp,in

Lp

)0.83 (6)  

and Ref and Prf are Reynolds number and Prandtl number of the fluid: 

Ref =
4ṁf

πμf Dp,in
(7)  

Prf =
μf Cf

kf
(8) 

Also, the exterior free heat transfer coefficient, hp,out, of the pipe can 
be calculated(Maadi et al., 2021): 

hp,out =
Nup,outka

Dp,out
(9)  

where ka is the thermal conductivity of the air and Nup,out can be found in 
the circular pipe using (Cengel, 2002): 

Nup,out =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.6 +
0.387Ra1/6

a
[

1 +

(
0.559
Pra

)9/16
]8/27

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

2

(10)  

and Raa and Pra are Rayleigh and Prandtl numbers, are given as 
following (Cengel, 2002): 

Raa =
gβ
(
Tp − Tamb

)
D3

p,out

ν2
a

Pra (11) 

Fig. 1. Heating system flowchart.  
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Pra =
μaCa

ka
(12) 

The energy balance for the radiator is (Borelli et al., 2018): 

(mC)r
dTr

dt
= ṁf Cf

(
Tr,i − Tr,o

)
+ UrAr

(
Tindoor − Tr

)
(13)  

where subscripts r and indoor refer to the radiator and the indoor 
environment, respectively. 

For the natural convection of the radiator, there are two empirical 
equations based on the Rayleigh number (Churchill & Chu, 1975; 
Scheibe, 2017): 

Ur =
Nurkr

yr
(14)  

Nur= {

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.68 +
0.67Ra0.25

r
[

1 +

(
0.492
Prr

)9/16]4/9

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, Rar < 109

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.825 +
0.387Ra1/6

r
[

1 +

(
0.492
Prr

)9/16]8/27

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1/2

, Rar > 109

(15)  

where Rar and Prr can be calculated as follows: 

Rar =
gβ(Tr − Ta)y3

r

ν2
a

Pra (16)  

Prr =
νa

αa
(17) 

In the previous equations, νa, αa, yr, and kr are kinematic viscosity, 
thermal diffusivity, height, and thermal conductivity, respectively, 
which are given as (McQuillan et al., n.d.): 

νa =

(
2.4090 × 108

T3/2
a

+
2.6737 × 1010

T5/2
a

)− 1

(18)  

αa =
(
− 4.3274+ 4.1190 × 10− 2Ta + 1.5556 × 10− 4T2

a

)
× 10− 6 (19)  

kr =
2.3340 × 10− 3T3/2

a

164.54 + Ta
(20) 

The thermal expansion coefficient, β, is given as (Holman, 2010): 

β =
1

Tr+Ta
2

(21) 

The indoor environment of the home loses heat to the outdoors 
through the walls and the windows and is heated up by radiators and 
pipes, so the energy equation is: 

(mC)indoor
dTindoor

dt
=
∑

UrAr

(
Tr − Tindoor

)
+
∑

UpAp

(

Tp − Tindoor

)

+ [UwallAwall +UwinAwin](Toutdoor − Tindoor) + Q̇S (22)  

where subscripts wall, win, and outdoor are the wall, window, and out-
doors of the home, respectively. Uwall and Uwin are wall and window 
thermal transmittance, respectively. And Q̇S is other heat sources 
including occupants and radiation. It should be mentioned that the 
thermal capacity of internal and external walls and equipment are 
considered in the current model. 

2.2. Illumination system 

The illumination system contains lamps and adjustable switches. 
Fig. 2 illustrates the flowchart of the illumination system which shows 
that occupancy and daylight hours affect energy consumption. 

The energy consumption of the illumination system per hour can be 
calculated as (Yao & Steemers, 2005): 

Ėil =

(
Ev

Ki

)

× A ×

(
noc

nro

)

(23)  

where Ėil is the energy-consumption rate of illumination in W, Ev is the 
average luminance level for residential buildings which is considered 
150 lux (Yao & Steemers, 2005), Ki is the luminance efficacy in workplan 
which is regarded as 92.2 lum/W for LED bulbs (Jin et al., 2009), A is the 
floor area of the building in m2, noc is the number of occupants at home, 
and nro is the number of building rooms. 

The day length, which is the time between sunrise and sunset in 
hours, is given approximately by (Almorox et al., 2005): 

hdl = wsr/7.5 (24)  

where wsr is the geometric mean sunrise hour angle on a horizontal 
surface (degrees) which is given as (Almorox et al., 2005): 

wsr = cos− 1[(sin5 − sinλsinδ) / (cosλcosδ)] (25)  

where λ is the latitude of the location, which is considered Genoa-Italy 
(44.4056◦). For evaluation of δ, the solar declination (radians), the 
Spencer formula is taken into account (Spencer, 1971): 

δ = 0.006918 − 0.399912cosΓ + 0.070257ssinΓ − 0.006758cos2Γ

+ 0.000907sin2Γ − 0.002697cos3Γ + 0.00148sin3Γ (26) 

Moreover, Γ is the day angle (radians) which is computed as 
(Almorox et al., 2005): 

Γ = 2π
(
nday − 1

)/
365 (27)  

where nday is the day number of the year, starting from the beginning of 
the year. 

The sunrise time (hsr) and sunset time (hss) for a horizontal surface at 
sea level are given as (Kambezidis, 1997): 

hsr = 12 − wsr/15 (28)  

hss = 12 + wsr/15 (29)  

2.3. Appliance system 

The following outlines the simulation of the appliance system. As 
Fig. 3 shows, in the current work, three shiftable “wet appliances”, 
including a washing machine, a tumble dryer, and a dishwasher are 
studied. Schedules for using appliances are defined based on a literature 
review (Mansouri et al., 1996). Based on the cycles of each appliance, 

Fig. 2. Illumination system flowchart.  
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occupancy, awakening time, and scenario, a probability function can be 
generated to model the appliance system. 

As Table 2 shows, according to a survey, the highest average number 
of washing machine and tumble dryer cycles per week were 8 and 3.4 
cycles per household, respectively (Mansouri et al., 1996). However, the 
tumble dryer is mostly used in autumn and winter. In this survey, the 
highest average use of a dishwasher was 0.95 cycles per day (Mansouri 
et al., 1996). The powers of appliances are also shown in this table 
(Noor et al., 2018). 

It should be mentioned that there are high-consumption appliances 
that are excluded from this study such as a refrigerator, a stove, a kettle, 
and a microwave oven due to the uncontrollability. 

2.4. Occupancy patterns 

The occupancy scenarios impact highly the energy consumption of 
homes, especially in the time of using the heating system. Two param-
eters should be considered to predict occupancy profile, including the 
occupant number and occupants’ lifestyle (Ren et al., 2013). In other 
words, the number of occupants and the period of the house is unoc-
cupied during the day are factors influencing the occupancy pattern 
(Yao & Steemers, 2005). 

According to the background history, occupancy patterns are cate-
gorized by the occupants’ job type. Based on different surveys in 
Australia (Jazaeri et al., 2019; Ren et al., 2013), there are six different 
occupancy scenarios of residential buildings, including occupants hav-
ing a full-time job, being retired, spending the afternoon outside, having 
a part-time morning job, a part-time afternoon job, and being school-
children. Similarly, different scenarios were considered in the UK by job 
types, including part-time working mornings 1/2, full-time working, 
part-time working 2/3, not working, and part-time working afternoons 
1/2 (Yao & Steemers, 2005). In parallel, three occupancy classes are 
characterized, namely high occupancy, medium occupancy, and low 
occupancy based on a percentage of daily hours of one person, and then 
the percentage of people at home in a family is calculated (Carpino et al., 
2018). 

In this research, similar to Ref (Yao & Steemers, 2005), five different 
scenarios based on types of occupants’ jobs are considered, which are 
shown in Table 3. Occupied time affects the operating time of the 
heating, illumination, and appliance systems, directly. 

2.5. Thermal comfort 

Thermal comfort is one of the main indicators for comparing 
different scenarios in a building. In this work, two classical indicators, 
namely the Predicted Mean Vote (PMV) and the Predicted Percentage of 
Dissatisfied (PPD), are considered as comfort indexes. The PMV index, 
which was suggested by Fanger (Djongyang et al., 2010; Iso, 2005), is 
used for the prediction of the mean response of a large group of people 
based on the ASHRAE thermal sensation scale, which is between − 3 and 
+3, namely cold, cool, slightly cool, neutral, slightly warm, warm, and 
hot. The PPD is the prediction of the percentage of people feeling more 
than slightly warm or slightly cold, who are dissatisfied thermally 
(Djongyang et al., 2010). 

Based on ASHRAE Standard 55 (Djongyang et al., 2010), for a 
climate condition with a relative humidity of 50%, a mean relative wind 
velocity lower than 0.15 m/s, a mean radiant temperature equal to air 
temperature, a metabolic rate of 1.2 met, and clothing insulation of 0.9 
clo in winter, the acceptable indoor temperature range is considered 
between 23 ◦C and 26 ◦C. 

2.6. Control methodologies and system integration 

The following outlines the simulation of the neighborhood and 
control methodology of the buildings by presenting basic and smart 
scenarios, and how blockchain works in the current study. The basic 
scenario is an islanded scenario in which each home operates separately, 
but the smart scenario is a neighborhood that is connected through a 
blockchain network to manage its consumptions. 

2.6.1. Basic scenario 
In that of basic, there is no interaction between controllers inside the 

home, and each controller works in islanded mode. As Fig. 4 shows, in 
the heating system, the boiler is switched on by the indoor temperature 
of the home to keep the temperature at the comfort level. In addition, the 
occupancy pattern is considered in the boiler timing. In the basic sce-
nario, the occupancy pattern is not predictable; this means that the 
heating system works when occupants return home. This may cause 
some discomfort problems when they arrive home. For the appliance 
system, a probability distribution function is considered for operating 
during the day. Awakening time and occupancy pattern effect the dis-
tribution function in the basic scenario. The operating hours of the 
illumination system are a function of awakening time and daylight 
hours, which are simulated in this model. In this scenario, the following 
assumptions are considered:  

• The model is transient.  
• For modeling each element, a control volume system is considered 

(Bergman et al., 2011).  
• In a heating system, the system of equations is solved implicitly. 
• In a heating system, thermal comfort is considered based on the in-

door temperatures of the home using the occupancy pattern (Djon-
gyang et al., 2010).  

• The initial value of indoor temperature is a random number between 
296 and 299 K.  

• The boiler power is different for each household. 

Fig. 3. Appliance system flowchart.  

Table 2 
Daily household appliances - level data (Mansouri et al., 1996; Noor et al., 
2018).  

Appliance Ėmin (W) Ėnom (W) Ėmax (W) Cycles 

Washing Machine 600 2,500 3,900 8/week 
Tumbler Dryer 200 2,200 3,000 3.4/week 
Dishwasher 100 1,500 3,100 0.95/day  

Table 3 
Occupancy pattern for a three-person household (Yao & Steemers, 2005).  

Scenarios Type Unoccupied period 

1 Part-time working morning session 1/2 9:00–13:00 
2 Full-time working 9:00–18:00 
3 Part-time working 2/3 9:00–16:00 
4 Not working N/A 
5 Part-time working afternoon session 1/2 13:00–18:00  
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Fig. 4. Control methodologies.  
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• The surface, volume, and thickness of the walls are considered 
randomly.  

• The illumination system is working based on sleep time and 
occupancy.  

• A probability-based use schedule is considered for appliances.  
• The results are during weekdays.  
• The controller cannot predict the occupancy pattern.  
• Each controller works separately without any access to the other 

households’ data.  
• Different occupant scenarios are considered randomly based on Ref 

(Yao & Steemers, 2005). 

In a basic scenario, the power of each appliance (Pa,t) can be calcu-
lated with the following equation: 

Pa,t = P × OAt × WRt(EOH,OH) (30)  

where P is the mean power of each appliance, OAt is a Boolean value for 
each occupancy pattern that shows the home is occupied and the oc-
cupants are awake, and WRt is weighted random, a number between 
0 and 1, which is a function of daily expected operating hours (EOH) and 
daily occupied hours (OH). 

2.6.2. Smart scenario 
In the smart scenario, a smart controller is considered in this paper. 

Each household integrates with others to predict the probability of en-
ergy consumption in the neighborhood. Unlike the basic controller, the 
smart type can predict occupancy patterns. It can access data that show 
the Probability of the Next Hour (PNH). The PNH is a float number 
between zero and one which is used separately for each system of a 
home such as heating, appliances, and illumination. It shows the prob-
ability of energy use in the next hour, which is predicted by each 
controller. For the heating system, the PNH is a function of current in-
door temperature, occupancy, comfort temperature limits, and the 
average PNH from the neighborhood. For appliances, PNH is a function 
of occupancy, the average PNH, and usage cycle. For illumination, it is a 
function of occupancy and the average PNH. Each controller calculates 
PNH for each hour and sends it to the network to share with other 
controllers in the same neighborhood. The goals of the smart scenario 
are to decrease energy consumption and to improve load shape and 
thermal comfort in the neighborhood. In the heating system, in addition 
to that of basic, the PNH can affect the boiler switch. In this model, a 
probability function can help the system to store heat inside the home by 
increasing the temperature of the home to reach the highest comfort- 
level temperature when PNH is low and vice versa. In addition, since 
the smart controller can predict the occupancy pattern, the heating 
system can preheat the indoor environment before the occupants arrive. 
In the appliance system, the PNH parameter is hence helpful to decrease 
or increase the probability of appliance used to shift time of use to off- 
peak times. In both scenarios, the probability of using an appliance is 
a function of occupancy and awakening of occupants, but in the smart 
scenario, with the help of PNH, the distribution of probability function 
changes to inform users which time is the best choice to use an appli-
ance. The illumination system works like the basic scenario. 

It should be mentioned that, because all the controllers in the smart 
scenario are connected and affect each other by exchanging data, it 
should be considered a probability for energy demand to manage the 
time of energy consumption. A certain model for any alteration in the 
consumption time pattern may reason for another peak in load shape, 
which may be worse than the predicted peak in the load. In other words, 
in this situation, all the controllers take the same decision in the system, 
which multiplies the load peaks. Therefore, a probability function is 
considered for controllers’ decisions to avoid new peaks. 

In the proposed model, all the smart controllers in all the homes have 
access to all the data in their neighborhoods. This data availability helps 
smart controllers to find the best solution to decrease the PAR of load 

shape. The assumptions, which are considered in this section, are similar 
to that of basic; nevertheless, there are some differences between these 
two scenarios:  

• A probability-based use schedule is considered for appliances based 
on the average hourly PNH.  

• The temperature setpoints can vary based on the average hourly 
PNH.  

• The controller can predict the occupancy pattern for preheating, 
based on the leaving from and returning to home times.  

• Each controller has access to the average PNH of other neighborhood 
homes, hourly. 

In the smart scenario, the power of each appliance (Pa,t) can be 
calculated with the following equation: 

Pa,t = P × OAt × WRt(EOH,OH, PNH) (31)  

where P is the mean power of each appliance, OAt is a Boolean value for 
each occupancy pattern that shows the home is occupied and the oc-
cupants are awake, and WRt is weighted random, a number between 
0 and 1, which is a function of daily expected operating hours (EOH), 
daily occupied hours (OH), and probability of next hour of the network 
(PNH). 

The weight of random function versus time is given as: 

Wt =
EOH
OH

× (1 − PNH) (32) 

Therefore, the WRt can be generated based on the weight function 
(Wt).

For the heating system, the smart controller changes the indoor set- 
point temperature based on the predicted occupancy and mean PNH of 
the neighborhood. Thus, the set-point temperature (Ts) is given as: 

Ts= {

Tmin before leaving
Tmin + (Tmax − Tmin) × (1 − PNH) ocuppancy
Tmin + (Tmax − Tmin) × (1 + C − PNH) before boiler switching off

(33)  

where Tmin and Tmax are the minimum and maximum indoor tempera-
tures for switching the boiler on or off to keep thermal comfort. C is the 
correction number for heat storage inside the building before switching 
off the boiler at night to increase thermal comfort during night hours. 

2.6.3. Blockchain network 
The smart scenario in the current study employs blockchain as the 

network between controllers to manage the energy consumption of the 
neighborhood. In the current section, first, the blockchain concepts and 
structures are explained, which is a distributed ledger technology. Then, 
it is discussed when and what type of blockchain is needed for the 
current study. Next, the implementation of smart contracts for the cur-
rent study is described. 

Blockchain, known as distributed ledger technology, has the poten-
tial to revolutionize industry due to its immutability, transparency, and 
redefined trust on a global scale (Underwood, 2016). It is based on a 
distributed ledger, which is verified by consensus, is not owned by a 
central authority and all the parties have access to the data (Crosby 
et al., 2016; Underwood, 2016). In other words, blockchain is a data 
structure stored and encrypted in blocks located in distributed nodes, 
using consensus algorithms to define trust (Lu, 2019). There are three 
core parts in blockchain technology, including block, chain, and 
network (Wang et al., 2019):  

• Block: this is the list of transactions that cannot be modified. When 
someone records something into it, other nodes can enquire.  

• Chain: this is a linking function between blocks. 
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• Network: this is a set of nodes that are individual computers inter-
connecting with each other. 

Fig. 5 illustrates the structure of a blockchain. As the figure shows, 
each block is divided into two sections: the header and the body. The 
header contains a hash of a previous block in the chain, a timestamp 
which is the number of seconds that have passed since a particular date, 
NONCE which is an abbreviation for “number only used once”, where it 
is a number added to a hashed block, and the Merkle root which is a hash 
for verifying the block data (Makhdoom et al., 2019; Wang et al., 2019). 
Moreover, as Fig. 5 shows, the body contains the transaction informa-
tion details (Wang et al., 2019). By adding a transaction to the network, 
it is broadcast to all the nodes. They verify it by validating the trans-
action signature, add it into a block, and broadcast it to the network. 
Other nodes verify whether a block is valid or not. They discard invalid 
blocks to have trustable data in the network (Wang et al., 2019). 

Before implementing the blockchain for the model, the following 
question should be answered: “Is it reasonable to use blockchain for the 
network?” Fig. 6 shows a list of questions to be answered before using 
blockchain in the system (Pedersen et al., 2019). In this study, it is 
assumed that there are different smart controllers inside the homes that 
need to send and receive data from the database. Hence, it is necessary 
to have a shared database for the network. This means that different 
parties are involved in the network and that they can have impacts on it 
with their data. Besides, there are different energy providers in each 
region, which are the nodes of the blockchain. None of them can be a 
trusted node to have all the data. There should be a shared database 
between them to solve the trust problem in the neighborhood network. 
In the expressed model, the transactions are the energy consumption of 
the home for each hour. Therefore, it is possible to find a constant 
transaction type to log data in the blockchain. It should be remembered 
that each smart controller requires the data logs of other neighborhood 
homes. Thus, based on the figure, using blockchain can be useful to solve 
this problem. 

The next question is: “What type of blockchain is needed?” To answer 
this question, it needs to be mentioned that the data should be stored 
publicly to be accessible to other devices in the neighborhood. However, 
only the parties who have permission can write data. In other words, 
reading the data is public, but writing data to the blockchain is 
permitted only to valid homes. This means that a permissioned public 
blockchain may be the best solution for this case. 

In this study, to model the blockchain system and develop smart 

contracts on the blockchain network, Ethereum Solidity is used (Dan-
nen, 2017; The Solidity Contract-Oriented Programming Language, n.d.; 
Wood, 2014), which is a commercial framework for developing 
blockchain-based smart contract codes. 

In this model, each home is connected to the blockchain network. As 
Fig. 7 shows, they send one transaction per hour to the network, con-
taining information including the Identifier (ID) of the home, the PNH, 
and the timestamp. The smart contract checks the validity of the ID and 
the timestamp of each transaction. After verification, the PNH of the 
connected home will change the mean PNH which is stored in the smart 
contract. 

The smart controllers receive the mean PNH of their neighborhood 
from the network. They can manage their consumption based on it. 
When the PNH has a high value, it means that in the next hour, the 
consumption will be high, so the controller should decrease consump-
tion in that hour. 

The system can categorize the times into three groups of low, mid, 
and high consumption compared to historical usage of the region. Thus, 
they can manage energy use to improve load shape by changing the 
probability weighting function of the appliance system and by changing 
the operating temperature of the heating system. 

In particular, the smart contract rules of the model are as follows:  

• Each home that is included in the neighborhood has permission to 
send data.  

• Each home can send data only once per hour.  
• The timestamp shows the hours that have passed since January 1st, 

1970 (UTC).  
• The timestamp of each transaction should be the same as the current 

timestamp.  
• The ID of each home will not be stored in the smart contract for 

security reasons; its hash will be stored to check the validity of the 
transactions.  

• There is no need to store all the PNHs to reduce the size of data stored 
in the blockchain. In other words, the average value of PNH will be 
stored instead of all the data.  

• Each home that is included in the neighborhood has access to the 
mean PNH. 

The main advantage of blockchain technology is that all the users 
have access to the data of their neighborhood with no third-party 
intervening. Therefore, due to the availability of information over 
time, it can be used by smart controllers inside homes to manage the 
energy consumption of those homes. 

In the proposed model, the only data that are public in the block-
chain are the average PNH of the neighborhood and the number of 
homes that logged the data for the current hour. In each log, users send 
the PNH of their next hour, and the smart contract merely updates the 
average based on the number of homes that logged their PNH. In 
addition, the hash IDs of homes that logged in the last hour and the hash 
IDs of homes that have permission to log are stored privately in the smart 
contract and that is not accessible in public. 

3. Results and discussion 

In the current study, a model is presented and implemented to 
simulate the energy consumption of a neighborhood. The heating system 
of each building is modeled physically to compute the heating energy 
consumptions and the thermal comforts. The heating system is validated 
with the real data of a building in northern Italy. The illumination and 
appliance systems of buildings and occupancy patterns are also modeled 
to calculate energy consumption. Then, a neighborhood of buildings is 
modeled in two scenarios to compare the results. In the basic scenario, 
the buildings controlled are islanded. In the smart scenario, buildings 
are connected by a blockchain network to share the probability of use 
altogether. Next, the results of both scenarios are compared and Fig. 5. Structure of a blockchain (Wang et al., 2019).  
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discussed based on the load shape, energy consumption, and thermal 
comfort. 

3.1. Validation 

In this section, the simulated heating system is implemented for a 
specific case study building to compare the results of the numerical 
model with the real data of the building. The case study is a 5-story 
building with 20 apartments, located in northern Italy (Fig. 8). The 
building has two sides, identical in structure, each with its stairwell. 
Radiators are made of aluminum and equipped with a thermostatic 
valve to regulate the flow of boiler circulating water. 

The indoor and outdoor temperatures and fluid supply and return 
temperatures were logged on two days, April 1st and 2nd. The circulating 
water temperatures were measured by K-type and RTD sensors. The 
indoor and outdoor temperatures were measured by digital thermome-
ters with a 0.5-degree range of error. The boiler was controlled by supply 
temperature, which was turned off when the supply temperature 
reached 55 ◦C, turned on when it reached 30 ◦C. Also, the boiler turned 
off during the night from 22:30 to 5:30. The required input values of the 
model are shown in Table 4. 

Fig. 9 illustrates the model of a heating plant of the whole building 

Fig. 6. When to use blockchains and which type of blockchain is needed (Pedersen et al., 2019).  

Fig. 7. The scheme of the blockchain network.  

Fig. 8. The simulated building in Northern Italy (Borelli et al., 2018).  
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and the circulating loop inside the modeled apartment, schematically. In 
this model, there is a boiler inside the building plant, and there is a water 
loop pumped to all 20 apartments. Each apartment has circulating water 
pipes, and six radiators, which heat the indoor environment. It is 

assumed that 1/20 of the total mass flow rate, circulates to each 
apartment (Borelli et al., 2014). It is also considered that all apartments 
have the same structural characteristics and physical properties (Borelli 
et al., 2014). 

The heating system is validated by comparing the supply and return 
temperature of an existing building (Borelli et al., 2018, 2014). Fig. 10 
shows the supply and return temperatures numerically and experimen-
tally. When the boiler is operating, from 5:30 to 22:30, there are small 
discrepancies in the supply and return temperatures of the numerical 
model with real data obtained by the sensors. In other words, during the 
operating time, the obtained error of the numerical model is less than 
1%. However, there is an unexpected increment of the temperature at 
the 24th hour of experimental logged data; it causes a considerable error 
at the 29th hour of the model. Based on the results, good agreement is 
observed between the current numerical simulation, shown in Fig. 10, 
and experimental logged data of the building. 

3.2. Neighborhood size 

In this section, different neighborhood sizes are modeled and 
examined based on the assumptions of Section 2.6.1 for the basic sce-
nario to find the best size that gives reasonable results with the lowest 
computational effort. Neighborhoods with 10, 20, 50, 100, 200, 500, 
1,000, 2,000, 5,000, and 10,000 households are compared in Fig. 11. As 
the figure shows, the results are compared based on the PAR of the 
power load shape, the execution time of the code, and the mean power of 
each household. In this work, the neighborhood with a size of 2,000 
households, which has a 1.3% PAR difference compared to that of 
10,000 and 5.3 times faster than it, is considered. 

3.3. Load shape 

In this section, the load shapes of the neighborhood in basic and 
smart scenarios are compared. The neighborhood is simulated based on 
the assumptions in Section 2.6 for a neighborhood with a size of 2,000 

Table 4 
The case study building properties (Borelli et al., 2018, 2014).  

Building 
Mass flow rate 1.3

kg
s  

Surface 2217.6 m2  

Net Volume 6725.3 m3  

Emissivity 0.3  
Thermal Inertia 2.5 × 108 J

K  
Liminal external resistance 

0.04
m2K
W  

Free gain 9000W  
Fluid 
Mass flow rate 1.3

kg
s  

Density of fluid 980
kg
m3  

Specific heat capacity of fluid 4186
J

kgK  
Pipes 
Pipe length 125 m  
Pipe wall conductivity 390

W
m.K  

The density of pipe wall 8920
kg
m3  

Specific heat capacity of the pipe wall 385
J

kgK  
Inner pipe diameter 0.025 m  
Outer pipe diameter 0.03 m  
External convective heat transfer 10

W
m2K  

Radiators 
Specific heat capacity of radiator wall 880

J
kgK  

Radiator mass 35 kg  
Number of radiators (per apartment) 6  

Fig. 9. Scheme of the heating system of the apartment.  
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homes. The same initial conditions and boundary layers are considered 
to compare the basic and smart scenarios. However, each building has 
different conditions and occupancy patterns. In the current simulation of 
the neighborhood, the climatic data were acquired on 10 days between 
November 1st and March 1st in Genova, Italy, during the cold season, and 
the results are an average of 10 days. Fig. 12, illustrates the average 
power load shape of the neighborhood for the basic scenario of 2,000 
homes. As the figure shows, there are three main peaks, at 13:00, 16:00, 
and 18:00, which are the time of arriving home for different occupancy 
scenarios. The worst one is at 18:00, which creates a PAR of 4.3 during 
the day studied. 

In general, it is shown that in the basic scenario, there is a peak of 
energy consumption in the evening, which leads to making high PAR. 

As discussed in this paper, in the smart scenario, all the homes 
studied contain a smart controller that has access to PNH data of 
neighbors’ homes. Besides, each home sends PNHs for heating and 
appliance systems to the blockchain network hourly to update the mean 
PNH of the neighborhood. 

In the heating system, PNH is calculated based on the indoor 

temperature. In other words, there is an indirect correlation between 
PNH and indoor temperature. The PNH of the appliance system is 
calculated based on occupancy patterns and daily and weekly proba-
bilities of use. In simple words, based on the daily and weekly history of 
use, a PNH can be generated, which shows the probability of next hour 
use. 

On the other hand, the mean value of PNH can be accessed by con-
trollers inside the homes through the blockchain network. The PNH can 
change the assigned indoor temperatures to switch the boiler on and off. 
This means that when PNH is adequately high, the switching tempera-
tures decrease, due to switching on and off at lower temperatures in the 
comfort region. In addition, the probability of an appliance can change 
by multiplying the PNH to it. Therefore, it can reduce the power load 
peaks, and it shifts the loads to off-peak times. 

For modeling, it should be mentioned that all the homes’ initial and 

Fig. 10. Experimental (Borelli et al., 2014) and the current numerical supply and return temperatures.  

Fig. 11. Neighborhood size study.  

Fig. 12. Power load shape of the integrated two thousand households 
(Basic Scenario). 
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boundary conditions are the same as those of basic. 
Fig. 13 shows the power load shape of the smart scenario for the 

same neighborhood as the basic scenario. As the numbers show, the 
locations of peaks and valleys are almost the same as those of basic in 
Fig. 12. However, the peaks of load shape in the smart scenario are 
milder. 

By comparing power load shapes of basic and smart scenarios, the 
highest peak in both is at 18:00. As Fig. 13 shows, the highest peak of the 
basic scenario is around 5,000 kW, while that of smart is around 3,500 
kW. The second highest peaks in both cases are at 16:00, around 3,000 
and 2,500 kW for those of basic and smart, respectively. The third large 
peak that is about 2,000 kW is around 13:00, which is almost the same as 
the basic scenario. Also, in the morning the slope of power in the smart 
scenario is lower than the basic scenario. 

The main systems that affect the load shape are heating and appli-
ance systems. The illumination system operates the same in both sce-
narios, so it does not change the load shape or PAR. The reason for the 
decreased load shape of the heating system is the preheating before 
arriving and keeping the temperature as low as possible to maintain 
thermal comfort at high demand times. Also, for the appliance system 
due to a change of probability distribution function the load shifts on the 
valleys in the smart scenario. 

By comparing basic and smart scenarios under the same conditions, 
using the smart controller could decrease the PAR value from 4.3 to 3.6, 
which is a 15% improvement. As the figure shows, the main peaks are on 
arrival times for different occupancy patterns in both basic and smart 
scenarios, which are at 13:00, 16:00, and 18:00. In general, the power 
peaks in the smart scenario are milder than in the basic scenario. 

3.4. Energy consumption 

Decreasing energy consumption is one of the main goals for imple-
menting the smart scenario. As expressed in this paper, there are three 
systems in each home, including heating, appliances, and illumination. 
Fig. 14 shows the average energy rate of each home during the simu-
lation grouped by each system. As the results show, the designed smart 
controllers can affect heating and appliance systems compared to the 
basic ones, while that of illumination is constant in both scenarios. 

In the smart scenario, the energy consumption of the heating system 
is 15% lower than that of the basic scenario. The reason for energy 
consumption reduction is that in the smart scenario the controller tries 
to keep the temperature to the lowest possible not to lose comfortability. 
What is more, it tries to decrease energy consumption before the time of 
leaving home. 

That of the appliance system also decreases to 3.8%, but that of 
illumination remains constant. The results show that the change in the 
energy consumption of the heating system is much larger compared to 

others. 

3.5. Thermal comfort 

The other parameter which is investigated in this research study is 
the comfort level of occupants. In this section, the average comfort level 
of occupants in a neighborhood is compared in basic and smart 
scenarios. 

Fig. 15 shows the average comfort percentage in different occupancy 
patterns by comparing basic and smart scenarios. In general, the smart 
scenario improves the thermal comfort in all the occupancies compared 
to that of basic. As the figure shows, the highest improvement is in the 
arriving hours and the night hours. In the arriving hours, the cause of the 
improvement is preheating the environment by predicting the arrival 
time. Also for the nights, the reason is keeping the temperature as high 
as possible in the last hours that the boiler is on. 

Chart (a) in the figure shows the average comfortability of occupants 
of homes that have part-time working morning sessions ½. In this oc-
cupancy pattern, occupants leave home at 9:00 and arrive home at 
13:00. As the figure shows, in the basic scenario, there are low comfort 
levels during arriving hours at 13:00 and 14:00 which reach 77% and 
86%. However, in those of smart, they are 89% and 94%, which are 
higher. During the evening, the comfort level is almost the same for both 
basic and smart scenarios. Around 21:00, in the smart scenario, the 
system tries to store the heat by heating the environment. As a result, the 
comfort percentage is higher at night in the smart scenario compared to 
basic. As a matter of fact, the heating system switches off before the 
occupants leave the home to decrease the energy consumption in the 
smart scenario, which causes a drop of 3% in the comfort percentage. 

The average comfort percentage of people with a full-time job is 
shown in chart (b) of the figure. As the chart shows, it has the same trend 
as chart (a) in comfortability during the day. The main difference is in 
the arriving hours, which have lower percentages compared to chart (a). 
The main reason for this drop is longer unoccupied hours which cause 
the loss of more stored heat of the building. Charts (c) and (e), which are 
for different types of part-time job, have the same trends as well, but the 
unoccupied hours are different. Chart (d) is for people who do not work, 
so the heating is on during the day and there is not great discomfort 
during the daytime hours. 

In general, the smart scenario improves the comfortability of occu-
pants. The highest improvement is in the arriving hours and the night 
hours. In the arriving hours, the cause of the improvement is preheating 
the environment by predicting the arrival time. Also for the nights, the 
reason is keeping the temperature as high as possible in the last hours 
that the boiler is on. 

Fig. 13. Power load shape of the integrated two thousand households 
(Smart Scenario). 

Fig. 14. Mean power per household.  
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3.6. Comparision 

In the present research, a model is presented and implemented to 
simulate the energy consumption of a neighborhood. Two scenarios are 
simulated, namely basic and smart, to show the effect of using smart 
controllers which are connected through a blockchain network. As the 
results show, using a smart controller interacting through the blockchain 
decreases the PAR by 15% compared to that of basic, and it decreases 
total energy consumption by 11%. The smart scenario also brings 7% 
more thermal comfort compared to the basic scenario. 

The comparison between different types of work due to the differ-
ence of baseline cases is not feasible. However, Table 1 compares the 
improvement of PAR, energy consumption, and comfort level which are 
achieved in the literature. 

As the table shows, the PAR improvements were reported in the 
range of 9% to 41.5% in previous works. Mediwaththe et al. (2016) 
proposed day-ahead decentralized energy management and they ach-
ieved 13.5% PAR improvement compared to their baseline case while 
they reduced the energy consumption by 10.5%. Durrilon et al. (2020) 
implemented multi-objective energy management. They compared the 
PAR and user satisfaction in three different scenarios. In the first sce-
nario which was a grid-oriented scenario, they achieved a 31% 
improvement in PAR and a 5.4% increment in global users’ satisfaction. 
In the second and third scenarios, which were mixed approach and 
customer-centered respectively, they achieved 23% PAR improvement 
and 12.7% satisfaction increment. 

As discussed in this paper, in the smart scenario, we achieved 15% 
PAR improvement, 11% energy consumption reduction, and a 7% 
thermal comfort increment. 

3.7. Scalability 

One of the drawbacks of the blockchain system is scalability, espe-
cially in proof-of-work (PoW). When the number of transactions per 
second increases inside the network, the maintenance costs will in-
crease. Currently, in the Ethereum blockchain, the transaction limit is 
about 7-15 per second which is higher than the needs in this model. In 
the proposed model each home sends one transaction per hour, which 
means that about 54,000 homes can be connected to a PoW blockchain. 
In the current study, each neighborhood has separated blockchain net-
works. In other words, in each blockchain network, there are less than 
2,000 homes, and the network is local. 

However, the computational capability is the requirement of PoW 
consensus for the security of the network. In other words, any effort at 
simplifying the PoW consensus means losing the security of the network. 
In the PoW algorithm, each miner validates the transactions to avoid 
network threats by competing to solve a mathematical problem to create 
a new block (Puthal & Mohanty, 2019). In the Ethereum blockchain, the 
time of generating a new block is between 10 and 20 seconds which is 
less than bitcoin but is not enough for IoT purposes (Red, 2017; Sali-
mitari & Chatterjee, 2018). 

In the current research, the permissioned Ethereum blockchain is 
considered. This kind of blockchain consumes energy almost the same as 
centralized networks, which is much less than public permissionless 
blockchains (Sedlmeir et al., 2021). Because the permissioned block-
chain is separated from the public Ethereum mainnet, the consensus 
algorithm can be customized or changed to improve the performance of 
the network (Ethereum Mainnet for Enterprise, n.d.). 

The blockchain implemented in the current study as MVP is a per-
missioned Ethereum based on PoW consensus which is not suitable for 
large scales. In other words, a simple PoW blockchain is used to show the 
results of implementing blockchain in a neighborhood. However, in the 
scaling up and production the consensus should change to proof-of- 
authentication to improve the performance (Maitra et al., 2020; 
Puthal et al., 2019; Puthal & Mohanty, 2019). 

In proof-of-authentication, the miners are trusted nodes for authen-
tication blocks to add into the distributed ledger. The miners authenti-
cate each block and its source. Each trusted node that authenticates first 
each block receives one trust unit. Otherwise, each trusted miner who 
performs the wrong authentication loses a trust unit and it converts to a 
normal node after a certain number of false authentications. This solu-
tion significantly reduces the computational procedure of validating the 
transactions (Puthal et al., 2019; Puthal & Mohanty, 2019). 

In general, to scale up implementation, proof-of-authentication is 
suggested due to significant computational improvement. 

4. Conclusions 

In this paper, a novel approach to building energy management in 
smart neighborhoods is proposed through the integration of dynamic 
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Fig. 15. Average comfort percentage versus time (24 hours).  
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modeling of energy demand with blockchain technology. For this pur-
pose, the heating, illumination, and appliance systems of a residential 
building are simulated using a transient model developed by MATLAB. 
The heating system is validated with reasonable agreement by real 
building logged data in Northern Italy. Wet appliances including a 
washing machine, a tumble dryer, and a dishwasher for which their use 
times are shiftable, were studied as modeling the appliance system. The 
illumination system is simulated by taking into account sunrise and 
sunset times by considering the movement of the sun and the earth. 
Then, different occupancy patterns are studied by comparing energy 
consumptions and comfort levels. Next, a neighborhood is examined 
using 2,000 homes with different occupancy patterns, initial values, and 
boundary conditions. In the basic scenario, everything is controlled by 
occupants except the boiler, which is controlled by the indoor temper-
ature of the home. In the smart scenario, a blockchain-based network is 
deployed using a Solidity Ethereum smart contract to reduce the PAR of 
power load, energy consumption and to improve thermal comfort in the 
neighborhood, using a parameter called PNH. 

As the results show, using a smart controller interacting through the 
blockchain decreases the PAR by 15% compared to that of basic, and it 
decreases total energy consumption by 11%. The smart scenario brings 
7% more thermal comfort compared to the basic scenario. The power 
load shapes in both scenarios have almost the same trend, which has 
peaks at the arrival times of occupants. But the peaks in the smart sce-
nario are milder than those of basic. The highest peak of the basic sce-
nario is around 5,000 kW, while that of smart is around 3,500 kW. 

The smart solution decreases the energy consumption of the neigh-
borhood, especially the heating system, due to keeping the temperature 
to the lowest possible and trying to decrease energy consumption before 
the time of leaving the home. The highest improvement is in the arriving 
hours and the night hours. In the arriving hours, the cause of the 
improvement is preheating the environment by predicting the arrival 
time. Also for the nights, the reason is keeping the temperature as high 
as possible in the last hours that the boiler is on. 

In the current study, in the aspect of scalability, each home sends one 
transaction per hour, which means that about 54,000 homes can be 
connected to one blockchain with a proof-of-work consensus protocol. In 
general, to scale up the implementation, proof-of-authentication is 
suggested due to significant computational improvement. 

The results achieved can be capitalized to support international 
policy aimed at GHG emission reduction and climate change mitigation. 
The strategy of the United Nations and of the many countries that have 
signed the Paris Agreement require concrete technologies and actions to 
be applied in order to reach the expected goals. Our work can effectively 
contribute for instance to the Covenant of Mayors promoted by the EU to 
foster the European strategy to zero emission communities and to other 
similar programmes that need operative tools to be translated into re-
ality. The application of blockchain technology to energy management 
of residential buildings is therefore a real option to pursue the objectives 
at the heart of these international policies. 
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