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Abstract

To reduce the incidence of occupational musculoskeletal disorders, back-support exoskeletons are being introduced
to assist manual material handling activities. Using a device of this type, this study investigates the effects of a new
control strategy that uses the angular acceleration of the user’s trunk to assist during lifting tasks. To validate this new
strategy, its effectiveness was experimentally evaluated relative to the condition without the exoskeleton as well as
against existing strategies for comparison. Using the exoskeleton during lifting tasks reduced the peak compression
force on the L5S1 disc by up to 16%, with all the control strategies. Substantial differences between the control
strategies in the reductions of compression force, lumbar moment and back muscle activation were not observed.
However, the new control strategy reduced the movement speed less with respect to the existing strategies. Thanks to
improved timing in the assistance in relation to the typical dynamics of the target task, the hindrance to typical
movements appeared reduced, thereby promoting intuitiveness and comfort.

Introduction

Musculoskeletal disorders (MSDs) are the most frequent occupational disease in many industrialized
countries (Punnett and Wegman, 2004; Bevan, 2012; Parent-Thirion et al., 2016), with significant
socioeconomic impact on individuals and health care systems (Davies et al., 2003; Woolf and Pfleger,
2003; Hoy, 2014). Common to many industrial sectors, manual material handling (MMH) tasks increase
the risk of developing MSDs associated with the back (Zurada, 2012).

Biomechanics of Back-Related MSDs

Back-related MSDs are associated with mechanical overloading and compression on the spine (Kumar,
2001; Coenen et al., 2014). DuringMMH, spinalmuscles and passive tissuesmust generate large extensor
moments, resulting in large compression forces on lumbar discs (Dolan et al., 1994).

©The Author(s) 2020. Published by Cambridge University Press. This is an OpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Wearable Technologies (2021), 1, e9
doi:10.1017/wtc.2020.8

Downloaded from https://www.cambridge.org/core. 04 Mar 2021 at 11:39:28, subject to the Cambridge Core terms of use.

https://orcid.org/0000-0002-1548-7005
https://orcid.org/0000-0002-5735-4446
mailto:maria.lazzaroni@iit.it
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/wtc.2020.8
https://crossmark.crossref.org/dialog?doi=10.1017/wtc.2020.8&domain=pdf
https://www.cambridge.org/core


Due to the difficulty in quantifying the reduction ofMSDs, an easier approach involves the assessment
of the risk factors identified as increasingMSDs incidence duringMMH. The extensor moment about the
lumbar joint indicates the response of the musculoskeletal system to the external load applied and largely
determines spine compression (Van Dieën and Kingma, 2005). Peak and cumulative extensor moments
have been identified among the factors that increase the risk of developing MSDs during lifting tasks
(Marras et al., 1995; Norman et al., 1998)).

In the same studies, trunkmovement velocity was identified as another of the factors that increaseMSDs
risk. Moreover, peak L5S1 moment increases with the increasing lifting speed (Bush-Joseph et al., 1988;
Greenland et al., 2013), while the cumulative moment is higher at lower speeds (Greenland et al., 2013)
because of the longer total lift duration. In Granata and Marras (1995), a significant increase of the spinal
compression with the lifting speed was observed and especially for the lowering phase (Davis et al., 1998).

The trunk inclination angle directly affects the extensor moment. Indeed, during trunk bending,
compression force on the L5S1 lumbar disc increases with increasing inclination of the trunk
(Andersson et al., 1976; Toxiri et al., 2018) because spinal muscles and passive tissues must balance
the increasing moment due to gravity.

For lumbar and thoracic erector spinae muscles, a relationship between their activity and lumbar
extensor moment was observed by Potvin et al. (1996) and Dolan and Adams (1993). Therefore,
recording the electromyography (EMG) signal is currently the most common measure to monitor lumbar
load during load handling tasks, especially over long durations (Potvin et al., 1996). Moreover, the
contribution due to erector spinae muscles on lumbar extensor moment is dominant, although the passive
contribution to the extensor moment (involving the intervertebral disc and ligaments, the iliolumbar
ligaments, the lumbo-dorsal fascia and collagenous tissue within themuscles) also generates compression
on the spine (Dolan et al., 1994).

Back-Support Exoskeletons

To reduce the incidence of back-related occupational MSDs, back-support exoskeletons have been
introduced (de Looze et al., 2016; Toxiri et al., 2019) to assist MMH, mainly focused on load lifting
and lowering. The use of passive exoskeletons (Abdoli-e and Stevenson, 2008; Bosch et al., 2016; de
Looze et al., 2016) and active exoskeletons (Muramatsu et al., 2013; de Looze et al., 2016; Chen et al.,
2018; Huysamen et al., 2018; Ko et al., 2018; Koopman et al., 2019c) has been associated with reductions
of spinal muscle activity (up to 40%). Correspondingly, reductions (up to 20%) in the compression of the
spine have been estimated by Koopman et al. (2019a), Koopman et al. (2019c), and Frost et al. (2009).

For passive exoskeletons, the amount of assistance is set as part of the mechanical design, and it can
only be changed via manual adjustments (e.g., via set screws). Moreover, they only store and release
energy provided by thewearer. By contrast, active exoskeletons can inject external energy,modulating the
assistance provided online by means of appropriate control strategies. This aspect could potentially
enhance the effectiveness and versatility of active exoskeletons compared to passive ones.

Different combinations of sensors have been used to detect the user’s movement intention and
accordingly define control strategies that command the actuators to assist the user following the task
requirements. Themost prevalentmethods to control back-support exoskeletons for load handling are based
on mechanically intrinsic signals and muscle signals (Koller et al., 2018). Exoskeletons controlled by
mechanically intrinsic signals use sensors embedded in the device structure (e.g., inertial measurement units
(IMUs), encoders or force/torque sensors) to capture valuable information about the user’s movement, such
as joint angles, segment inclinations, velocity, and acceleration. To assist lifting and lowering tasks, the
user’s trunk inclination is widely employed to implement gravity compensation (Robo-Mate, Toxiri et al.,
2018; Hyundai Waist Exoskeleton (H-WEX), Ko et al., 2018; and HAL, Hara and Sankai, 2010). Another
approach is to first detect the beginning of lifting and then control the actuators based on hip and thigh angles
(as implemented for Active Pelvis Orthosis (APO), Chen et al., 2018).

Exoskeletons controlled with EMG-based strategies actuate the device according to the user’s muscle
activity, anticipating the user’s movement, as EMG signals precede force generation. For back-support
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exoskeletons, a straightforward method might be a control strategy based on spinal muscle activity, as
these muscles are directly responsible for most of the lumbar compression (e.g., HAL exoskeleton, Hara
and Sankai, 2010). However, access to spinalmuscles using surface EMG (sEMG)might be obstructed by
the exoskeleton’s own structure, potentially inhibiting adoption. A different approach is to use a group of
muscles that contain valuable information for assisting the task, but it is more accessible for measuring.
For this purpose, an sEMG Myo armband was used to measure the forearm muscle activity and
accordingly modulate the assistance (Robo-Mate exoskeleton, Toxiri et al., 2018), since the activation
of these muscles increases with the weight of the external load being handled.

To effectively assist tasks execution, and thus promote the adoption of back-support exoskeletons in
real working scenarios, an open challenge is the selection of the control strategy that best assists the user in
executing a specific task. Considering the use in industrial settings, the main factors to select a control
strategy are its practical functionality (considering the user’s freedom of movement and wearability and
ease of use) and its effectiveness in reducing MSDs risk factors.

Objective of this Study

The aim of this study is to investigate the effects of different control strategies for a back-support
exoskeleton used to assist with lifting and lowering tasks. With respect to previous studies performed on
an earlier version of the same device (Toxiri et al., 2018; Koopman et al., 2019c), a new control strategy
making use of the angular acceleration of the user’s trunk was introduced in Lazzaroni et al. (2019). The
main advantages in terms of assistive torque provided to the users would emerge during the transition
phases (i.e., beginning and end of lowering and lifting), thereby providing an appropriate adaptation to
their movement dynamics. To validate this new strategy, its effectiveness was experimentally evaluated in
terms of spine kinematics, muscle activation, lumbar extensor moment, and compression reductions and
variations in the task execution relative to the condition without the exoskeleton. Additionally, to study its
effects in greater detail, the acceleration-based strategy was tested against existing strategies for com-
parison (Toxiri et al., 2018; Koopman et al., 2019c).

Methods

Back-Support Exoskeleton

XoTrunk is an active back-support exoskeleton designed to assist workers while performingMMH tasks.
The aim is to reduce lumbar overload by generating part of the extensor moment normally generated by
the spinal muscles. The prototype is shown in Figure 1. It is an evolution of the Robo-Mate active
exoskeleton used in previous studies (Toxiri et al., 2015) and was developed at XoLab, Istituto Italiano di
Tecnologia, within a research collaboration with INAIL (Italian Workers’ Compensation Authority).

The device consists of an articulated aluminum frame connected to the user’s body with backpack-like
shoulder and waist straps and custom thigh support structures. Two electric actuators are located approx-
imately at hip height, one on each side, and are responsible for generating the assistive torques between the
torso and corresponding thigh links in the sagittal plane. The device weighs approximately 6kg.

The control scheme is structured on three levels (Figure 2), as proposed in Tucker et al. (2015). The
concept that drives the control is based on exploiting the versatility of an active device, by adapting the
exoskeleton behavior to the various tasks performed by users. Indeed, different studies (Baltrusch et al.,
2018; Näf et al., 2018) have highlighted that passive exoskeletons could interfere with, or restrict, users’
movements during the execution of tasks for which they were not originally designed (e.g., walking,
sitting, rotating, squatting, and wide standing).

The idea of the three-levels control (Figure 2) is to assist users only when performing tasks that need
assistance and, thus, to overcome the problem of imposing undesirable constraints or obstruction on the
execution of tasks that do not require assistance. For this purpose, the high-level control classifies online
and in realtime, the different activities the users are performing, automatically distinguishing between
walking, standing, and bending (Poliero et al., 2019). The mid-level (i.e., the control strategy) modulates
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the assistance τref during the execution of the task, adjusting to conditions that determine the need for
assistance. Control strategies make use of different signals coming from the users (e.g., trunk angle and
trunk acceleration) to estimate their movement intention and accordingly anticipate and adapt the
assistance provided by the exoskeleton. Thanks to this control structure, it is possible to select the most
convenient control strategy for each recognized task and correspondingly set the control parameters.
Finally, the low-level control regulates the output torque of the two actuators τout with a closed-loop torque
controller, tracking the reference signal τref generated by the control strategy.

Control Strategies for Lowering and Lifting Tasks

Different control strategies have been implemented on the XoTrunk exoskeleton to assist users during
lowering and lifting tasks. These strategies consider the factors (one or a combination of them) identified
as affecting the lumbar compression: the user’s trunk inclination, the weight of the object lifted, and the
user’s trunk angular acceleration.

The inclination control strategy (Toxiri et al., 2018) provides assistance proportional to the trunk
inclination. The idea is to assist users to partially compensate for the effect of muscle force on spine
compression. When the user is bending forward, the spinal muscles and the passive tissues must
counteract the moment generated by gravitational forces because of the exoskeleton, the user’s upper
body, and the external load masses. The assistive torque is defined proportional to the sine of the user’s
trunk angle θh in the sagittal plane (θh =0 when the user is standing upright), acquired with an IMU
embedded on the exoskeleton’s rigid back structure:

τincl ¼K incl sin θhð Þ, (1)

Figure 1. The experimental setup displaying the two force plates, the marker clusters, the electromy-
ography sensors, and XoTrunk exoskeleton. The inclination angle of the trunk θh as measured by the
onboard inertial measurement units is defined as equal to 0 when the user is standing upright. The

actuators generate torques τ in the sagittal plane between the user’s torso and thighs.
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where K incl is the control gain that may be adjusted for each user and task to suit individual preferences
(e.g., comfort and perceived pressure) and task conditions.

The hybrid control strategy (Toxiri et al., 2018) targets two of the factors identified as affecting the
lumbar compression: the trunk inclination and the weight of the object lifted. To the inclination assistive
torque, another torque is added, which is proportional to the EMG of the forearmmuscles. This is used as,
during grasping and holding, the forearm muscle activity increases with the weight of the object lifted.
The activity of these muscles is recorded via a commercially available device based on sEMG: the Myo
gesture control armband10 (Thalmic Labs, Inc., Kitchener ON, Canada). The contribution of the two
torques is regulated by the corresponding gain K incl and Kmyo (adjustable for each user and task):

τhybrid ¼K incl sin θhð ÞþKmyo EMGforearm: (2)

The dynamic control strategy (Lazzaroni et al., 2019) adapts the assistance to the dynamics of the
movement. This control strategy sets the assistance level to be proportional to both the inclination and the
angular acceleration of the user’s trunk. An xSensMTw IMU (Xsens Technology) is attached to the user’s
trunk (approximately at the sternum) to measure the trunk angular velocity _θh. The trunk angular
acceleration €θh [rad=s2] is then obtained by differentiating and filtering the angular velocity in the sagittal
plane (low-pass filter with a cut-off frequency of 1Hz). By summing up an inclination-based and an
acceleration-based torque, it is possible to assist the user according to his/her statics and dynamics. The
static (i.e., K incl sin θhð Þ) and the dynamic (i.e., Kacc

€θh) contribution can be scaled differently, adjusting
the corresponding control gains K incl and Kacc:

τdynamic ¼K incl sin θhð Þ�Kacc
€θh: (3)

Figure 2. Block diagram representation of the three-levels control system. The high-level control
distinguishes the activity. The mid-level control modulates the reference torque τref required for the

specific activity identified. The low-level control regulates the actuators output τout. The exoskeleton ΣEXO

(as an admittance) and the human ΣHUMAN (as an impedance) are mechanically interconnected.
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Loosely speaking, the acceleration-based torque may be seen as compensating for part of the inertia of
the user’s upper body, while the inclination-based torque compensates for its mass.

Figure 3 conceptually illustrates the torques defined by the three control strategies during the different
phases.With respect to the inclination control strategy, the main advantage of the hybrid strategy emerges
when the user grasps and holds the box. Greater assistance is provided at the beginning of lifting when the
user grasps the box and starts to lift it, that is, when the muscles have to generate the greatest extensor
moment (Koopman et al., 2018). Furthermore, a certain assistance is provided also in the upright posture,
if the user is holding the box. On the other hand, the main advantage of the dynamic strategy emerges
during the transition phases of the movement (i.e., beginning and end of lifting and lowering). Indeed,
using the user’s trunk angular acceleration signal, it is possible to follow the intention of the user,
responding to changes in velocity, which correspond to the will to start or to slow down themovement in a
certain direction. In particular, the dynamic strategy provides a lower torque at the beginning of lowering
because a higher assistancemay be perceived as hindering the user in bending over. Furthermore, a greater
assistance is provided at the beginning of lifting, when the muscles have to generate the greatest extensor
moment (Koopman et al., 2018).

For illustration purposes, in Figure 4, the actual torque applied by the exoskeleton is compared with the
reference torque commanded by the control system (for one subject). In this regard, the improvement of
the new prototype with respect to the device we used in our previous study (Koopman et al., 2019c) is
visible in terms of torque tracking.

Evaluation

We devised an experimental protocol to explore the effects of the exoskeleton assistance and more
specifically of the dynamic strategy compared to previously implemented strategies. Their effectiveness
in supporting the user during lifting and lowering tasks was evaluated with particular consideration of the
risk factors for the development of MSDs: lumbar extensor moment, spine kinematics (trunk flexion
velocity and inclination angle), muscular activation, and lumbar compression force.

Figure 3. Torque references generated by the inclination (red), hybrid (yellow), and dynamic (blue)
control strategy during idealized lifting and lowering tasks. The same reference torque is used for the two
actuators, so the total torque applied at the lumbar joint is double. The trunk inclination and the different

phases of the task are displayed at the top.
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The experiment tested two hypotheses. (a) We hypothesized that the physical support provided by the
exoskeleton reduces the activation of the spinal muscles during the target task, resulting in reduced
compression force and lumbar extension moment (as it would reduce the part of compression specifically
attributed to the activation of spinal muscles). (b) The dynamic control strategy is compared with the
existing strategies. The new control strategy is expected to provide more appropriate support during
lowering and lifting tasks, reducing hindrance, and improving the timing of the assistance in relation to the
typical dynamics of the movement. This will have a positive impact on increasing the movement speed
and reducing the peak compression force. As an additional secondary aspect of interest, we expected
changes in the execution of the task when wearing the exoskeleton (e.g., reduced movement speed or
trunk inclination) that could result in further advantages or disadvantages for preventing the risk of
injuries.

Experimental Procedures

Nine male healthy subjects (age: 27.3� 2.7 years, weight: 73.8� 7.6 kg, height: 1.82� .09m) with no
history of low back pain participated in the experiments, approved by the local ethics committee.
Participants were instructed to perform a complete task defined as the lifting and the lowering of a box
(as illustrated in Figure 3). No instructions on the techniques (i.e., stoop or squat) for the lowering and
lifting movement were given. The task was executed in four different assistance modes:

• without the exoskeleton: no-exo;
• with the exoskeleton: inclination strategy (Eq. (1)) with K incl =15;
• with the exoskeleton: hybrid strategy (Eq. (2)) with K incl =10 and Kmyo = 10;
• with the exoskeleton: dynamic strategy (Eq. (3)) with K incl =15 and Kacc = 1.

To allow comparison between subjects, we empirically selected the values for the gains K incl , Kmyo, and
Kacc, instead of adjusting them to each subject’s individual preference and body characteristics. Addi-
tionally, two different execution speeds (normal and fast) and two different box weights (7.5 and 15 kg)
were used. The speed was not strictly imposed. For the normal speed, participants were asked tomove at a
natural self-selected pace. For the fast speed, participants were asked to perform the task at a substantially
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faster pace compared to the normal one. For each condition (i.e., each combination of the three
independent variables: assistance mode, speed, and box weight), the task was repeated twice. The order
of the assistance mode, task execution speed, and box weight were randomized.

Instrumentation and Data Processing

Subject kinematics were measured with an optoelectronic 3D motion capture system (Certus, Optotrak,
Norton Digital, Inc.), with a sampling frequency of 50Hz. LED cluster markers were attached to lower
legs (with feet), upper legs, pelvis, trunk, upper arms, and forearms (with hands). To track the position and
orientation of the subject’s body segments and construct the linked segments model, the markers were
related to the anatomical landmarks, acquired using pointer measurements (Cappozzo et al., 1995).
Ground reaction forces (GRFs) were recorded at a sampling frequency of 200Hz with two custom-made
force plates (1.0� 1.0m). Optotrak and force plate data were low-pass filtered with a zero-phase forward-
backward second-order Butterworth digital IIR filter, with a cut-off frequency of 10Hz.

EMG of six spinal and abdominal muscles (rectus abdominis (RA), external oblique (EO), internal
oblique (IO), longissimus thoracis (LT), iliocostalis lumborum (IL), longissimus lumborum (LL)) were
recorded bilaterally (right and left) with 12 pairs of surface EMG electrodes, placed following SENIAM
guidelines (Stegeman and Hermens, 2007). EMG data were amplified (Porti-17TM, TMSi, Enschede,
The Netherlands), band-pass filtered (10–400Hz) with a zero-phase forward–backward second-order
Butterworth digital IIR filter, filtered to remove the electrical noise at 50Hz (forward–backward second-
order Butterworth band-stop filter) and the ECG signal (high-pass filter to remove heart rate artifact
[Drake and Callaghan, 2006]). The signals, then, were rectified and low-pass filtered with a cut-off
frequency of 2.5Hz (forward second-order Butterworth digital IIR filter) (Potvin et al., 1996) to obtain the
envelope. To compare muscle activity levels and activation patterns between muscles, tasks, and
individuals, EMG signals were normalized to the maximal voluntary contraction (MVC) (Halaki and
Ginn, 2012). To obtain spinal and abdominal muscles’ maximum activity, subjects performed six
maximum exertions, repeated twice (McGill, 1991; Vera-Garcia et al., 2010). For spinal muscles MVC
acquisition, subjects were strapped in a prone position, with the torso hanging over the edge of the test
bench, and asked to extend the trunk upward and to twist right and left against manual resistance applied
by the experimenter. To measure the MVC of abdominal muscles, subjects laid in a supine position and
attempted to flex the trunk upward and to twist right and left against manual resistance. The torques
applied by the exoskeleton were measured using embedded strain gauge-based torque sensors.

Data Analysis and Statistics

The effects of the exoskeleton and the different control strategies on assisting lowering and lifting were
investigated comparing variables that are crucial for defining the risk of low back disorders: trunk
inclination angle and velocity, spinal muscle activity, lumbar extensor moment, and compression forces.

WithGRFs and the kinematics of the lower body segments, the total L5S1 extensormoment generated by
the subject plus the exoskeleton was computed solving the inverse dynamics of a whole-body 3D-linked
segment model (Kingma et al., 1996), using bottom-up analysis (Hof, 1992). Then, the net L5S1 extensor
moment generated by the subject was calculated by subtracting the torque provided by the exoskeleton from
the total L5S1 extensormoment. The lumbar compression force was calculatedwith an EMG-drivenmodel
(VanDieën and Kingma, 2005). Themoments generated by the muscles were estimated using EMG signals
and the L5S1moment obtained solving the inverse dynamics and an optimization procedure. Themoments
generated by themuscleswere distinguished between themoment generated by the abdominalmuscles, and
the moment generated by the back muscles, and the passive moment generated by the muscles and passive
tissues, from which the compression force on the L5S1 joint is computed (Van Dieën and Kingma, 2005).

Peak values of the total L5S1 extensor moment (ML5S1_total), the net L5S1 extensor moment
generated by subject (ML5S1_subj), averaged IL and LL activity, average RA and EO activity, compres-
sion force on L5S1, trunk inclination angle, and trunk angular velocity were computed for statistical
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analysis for all the subjects and conditions. The statistical significance was tested using three-way
ANOVA for testing the main effects of the assistance mode, the execution speed, and the box weight,
plus their interactions. For variables with significant main effect of the assistance mode (p-value < :05),
a Bonferroni posthoc test was conducted for each combination of speed and box weight separately, to
compare the effects of the different assistance modes. Data analysis was performed inMatlab 2018a (The
Mathworks, Natick, USA).

Results

The averages of the peak values across all subjects for the total L5S1 moment, the net L5S1 moment
generated by the subject, the averaged IL and LL activity, the compression force on L5S1, the trunk
inclination angle, and the trunk angular velocity were tested using three-way ANOVA. Results of
the ANOVA tests are shown in Table 1. For all variables, a main effect of the assistance mode was found
(p-value< :05). Amain effect of the execution speedwas found for all the variables (the L5S1moment, the
spinalmuscle activity, and thus the compression force increases for faster speed).Moreover, amain effect of
box weight was found for all the variables, except for the trunk inclination angle (the L5S1 moment, the
spinal muscle activity, and thus the compression force increases with the increasing of the box weight).

For variables with a significant main effect of the assistance mode (p-value< :05), peaks average and
standard deviation across all subjects are shown in Figure 5, for each assistancemode (no-exo, inclination,
hybrid, dynamic), execution speed (normal and fast), and object weight (7.5 and 15 kg). For each
combination of speed and box weight separately, Bonferroni posthoc tests were conducted to compare
the effects of the assistance modes (significant differences between assistance modes are indicated by
horizontal bars with *).

The total L5S1 moment was comparable for hybrid and dynamic strategies and no-exo modes, while it
was slightly lower for the inclination strategy (on average less than 10Nm), meaning that subjects slightly
changed their lifting behavior. The net L5S1 moment generated by subjects was significantly lower with all
the control strategies, for all object weights and execution speeds, with reductions ranging from 10 to 17%.

In line with this, reductions in peak back muscle activity with the exoskeleton were observed, ranging
between 26 and 39% (i.e., percentage reduction compared with the no-exo mode) for the LL and the IL.

Slight reductions in trunk inclination were observed (ranging from 3 to 11%), with no statistical
significance, for all the conditions with the exoskeleton. In line with this, the trunk velocity also decreased
when using the exoskeleton, although on average less for the dynamic strategy (13%) than for the
inclination and hybrid strategies (17%).

Figure 5 suggests that when wearing the exoskeleton, the L5S1 disc compression forces are reduced,
ranging from 10 to 16% over control strategies. Although a main effect of the assistance mode was found
using three-way ANOVA tests, statistical significance between the different assistance modes was not
achieved with posthoc tests.

Table 1. p-Values of three-way ANOVA tests with factors: assistance mode (no-exo, inclination, hybrid, and dynamic), execution
speed (normal and fast), and box weight (7.5 and 15 kg) and their interactions

Main effect Main effect Main effect Interaction Interaction Interaction

Assistance Speed Weight Assistance*speed Assistance*weight Speed*weight

ML5S1_total <.001a <.001 .002 .447 .062 .059
ML5S1_subj <.001a <.001 .011 .676 .139 .2436
EMG IL+LL <.001a <.001 .004 .667 .159 .424
Compression <.001a <.001 <.001 .024 .012 .475
Trunk inclination .002a .010 .681 .648 .535 .953
Trunk velocity <.001a <.001 .041 .110 .013 .110

Significant results are in bold (p-value <.05).
aVariables with significant main effect of the assistance. For these variables, a Bonferroni posthoc test was conducted for each combination of speed and box
weight separately, to compare the assistance modes. Peak average and standard deviations are displayed in Figure 5.
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Figure 5. Peaks average and standard deviation across all subjects for variables with a main effect of the assistance mode (indicated with $): total L5S1
moment, net L5S1 moment generated by the subject, averaged iliocostalis lumborum and longissimus lumborum activity, compression force on L5S1, trunk
inclination angle, and trunk angular velocity. Results are shown for each assistance mode no-exo (green), inclination (red), hybrid (yellow), and dynamic
(blue), execution speed (normal and fast) and object weight (7.5 and 15 kg). £ indicates the main effect of execution speed. # indicates the main effect of

box weight. Bars with * indicate a significant posthoc differences between the assistance modes
(p-value < :05).
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Discussion

The net L5S1moment generated by subjects was significantly lower whenwearing the exoskeleton for all
the assistance modes, with reductions of up to 17%, in line with Koopman et al. (2019c). The peak
reductions observedwere similar to those obtainedwhen the PLADpassive device was tested (Frost et al.,
2009), and greater than those with Laevo, a commercially available passive exoskeleton for which a
similar study was conducted (Koopman et al., 2019a). Although the reduction in the net L5S1 moment is
expected to be mainly due to the effect of the exoskeleton assistance, part of this reduction may be due to
the changes in lifting behavior (i.e., reduced speed and inclination), which are suggested by the slight
decrease in the total L5S1 moment.

The reduction of the peak compression force on the L5S1 disc is in line with the previous study (16%)
(Koopman et al., 2019c) with no significant difference between the control strategies. Peak reductions
were greater than the reductions obtained when testing the Laevo (8–9%) (Koopman et al., 2019a).With a
16% reduction of peak compressive force, the risk of back-related MSDs may be substantially reduced
(Brinckmann et al., 1989); Waters et al., 1993).

Reductions in peak spinal muscle activity ranging between 26 and 39% for LL and IL are in line with
the results obtained when testing the previous prototype (Huysamen et al., 2018; Toxiri et al., 2018) and
other active devices (Muramatsu et al., 2013; Chen et al., 2018; Ko et al., 2018) and greater than the
reductions obtainedwhen testing the Laevo (Koopman et al., 2019a). Additionally, the decrease inmuscle
activity when using the exoskeleton might successfully reduce muscle fatigue (Potvin and Norman,
1993). An increase in the endurance time when using the exoskeleton is therefore expected. However,
further investigations might detect whether the reduction in spinal muscle activation coincides with a shift
from active to passive force generation (i.e., the extensor moment generated by passive tissues increases).
In fact, although the contribution due to spinal muscles on lumbar compression is dominant, the passive
contribution to the extensor moment also generates compression on the spine. Moreover, passive tissues
could creep or incur microdamage (Solomonow et al., 2003).

Compared to our previous study on an earlier prototype, the reduction in peak lifting speed when using
the exoskeleton was lower overall (Koopman et al., 2019c). This improvement may be partially attributed
to the technical advancements of the exoskeleton (the weight of the new prototype is lower and the
actuators have lower inertia).Moreover, the speed reduction for the dynamic control strategy appears to be
lower compared to the other two strategies, although no statistical significance was found. This result
encourages further investigation as it seems to support our initial hypothesis that the new control strategy
provides more appropriate support to the tasks, improving the timing of the assistance in relation to the
typical dynamics of the movement, with positive improvement in intuitiveness and comfort in use, and
limiting the exoskeleton’s negative impact on productivity (i.e., the hindrance to fast movement is
reduced). Lower speed reduction associated with the use of XoTrunk could be an advantage with respect
to the use of passive exoskeletons such as the Laevo, for which a significant reduction of trunk angular
velocity was observed (Koopman et al., 2019a).

Reductions in peak inclination angle between modes with the exoskeleton and the no-exo mode were
around 11%. This slight reduction when wearing the exoskeleton is most likely because the structure of
the device does somewhat hamper the lumbar flexion, resulting in a slight limitation of the freedom of
movement. With respect to the state of the art, a greater reduction of user bending was seen in Näf et al.
(2018), using a passive exoskeleton. On the other hand, other tests with the Laevo passive exoskeleton
showed an increase in the flexion angle when using the exoskeleton (Bosch et al., 2016; Koopman et al.,
2019a), but no results were reported for the trunk inclination angle. The slight reduction of the peak trunk
inclination angles, however, may be interpreted as the exoskeleton still partially hindering subjects
movement or influencing the lifting behavior. Thereby, part of the reduction of peak total L5S1 moment
can be attributed to the reduction of the inclination. However, the fact that the exoskeleton affects the
lifting behavior in a way that reduces the trunk inclination without preventing the execution of the
movementmay be seen as an advantage since the total L5S1moment decreases, and thus the related risk of
reporting a back injury decreases as well.
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The improvement obtained in the present study may be partially attributed to the technical advance-
ments of the exoskeleton. The weight of the new prototype as well as the actuators’ perceived inertia are
lower. A further improvement of the new prototype is visible in Figure 4, that is, improved low-level
control allows the actuators to track the reference torque more accurately, resulting in more effective
assistance compared to the previously tested version (Koopman et al., 2019c). Despite the improvement,
imperfect tracking of the reference torque by the exoskeleton actuators still affects the applied assistance.
In particular, the applied torque at the beginning of lifting, when the speed increases rapidly, is
substantially less than expected, correspondingly impacting the effectiveness. This is particularly
inconvenient for the dynamic strategy, which critically increases the assistance when significant accel-
eration occurs.

One limitation of the present study is that only peak values were considered and not integral values. In
particular, the difference between integral and peak valuesmay be significant when comparing the normal
and fast speeds. In fact, while peak compressive force and L5S1 moment are higher at fast speed, the
cumulative values are much greater at the slow lifting speed because of the longer lifting duration
(Greenland et al., 2013). Moreover, focus on peaks may have hidden some advantages of the dynamic
control strategy. Figure 4 suggests meaningful differences especially during the upright phase.

Another limitation of the present study is that no predefined pace for the normal and the fast speed was
set for executing the task. Therefore, the effects of the different strategies when changing the speed cannot
be precisely analyzed (i.e., task speed is subjective and changes between subjects). In particular, we
expect more hindrance during the lowering phase at fast speed with the inclination and the hybrid
strategies. Indeed, at the beginning of lowering, the user must move against the assistance provided by the
exoskeleton, that is, higher with the inclination and hybrid strategies than for the dynamic.

Considering its hardware implementation, the main drawback of the dynamic strategy is that an extra
IMUhas to be added on the user’s trunk.A further limitation regards the angular acceleration signal, that is
obtained by differentiating and filtering the angular velocity. In particular, the design of the filter requires a
trade-off between signal delay and noise. The filter frequency of 1Hz has been selected to reduce the noise
in the acceleration signal introduced by the differentiating of the angular velocity signal. However, the
delay introduced in the assistance by signal filtering may be critical and has to be compared with the
frequency of the movements performed by users. Moreover, overestimating the acceleration can lead to
feedback inversion and instability (Calanca et al., 2017). To avoid excessive torques, the magnitude of the
acceleration gainKacc should be considered carefully. In this study, all the gainsK incl ,Kmyo, andKacc were
kept fixed for all the subjects to allow comparison between subjects and to reduce the complexity.
However, personalized and thus more effective assistance may be obtained with subject-specific gains.
Future works will address gain tuning in order to adjust the assistance to subjects’ individual preferences
(e.g., comfort and perceived pressure), body characteristics, and task conditions. In particular, subject-
specific values may be set based on subject’s mass and standard anthropometrics. However, we believe
that the user should retain the possibility to adjust the gains to a degree, to address his preferences in terms
of perceived assistance and hindrance, and overall comfort.

Compared to passive devices, active exoskeletons have been associated with greater reductions in
some of the factors that increase the risk of developingMSDs, as discussed above. A number of studies on
active devices have shown a substantial reduction in the back muscle activity (Muramatsu et al., 2013;
Chen et al., 2018; Huysamen et al., 2018; Ko et al., 2018; Toxiri et al., 2018), even greater than that
obtained when the Laevo was tested with a similar procedure (Koopman et al., 2019a).

From an energetic point of view, active exoskeletons have the potential to add and deliver energy to the
user.While the inclination controller is essentially passive, the hybrid and dynamic controllers might have
a net energy injection over one cycle. These strategies thus would extend well to possible future
exoskeletons capable of greater assistive torques, while existing strategies based on inclination or passive
assistance may not apply equally well. In fact, for active devices that do not consider dynamic factors and
for passive devices, an increase in the total torque supplied would result in increased hindrance while
bending over during the lowering phase.
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Future works will address the assessment of the users’ experience to compare the perceived comfort
and intuitiveness between control strategies. Moreover, considering the use in industrial settings,
improvements of the perceived fatigue and endurance time when using the exoskeleton could be valuable
additional benefits that have to be investigated. Combinations of the control strategies presented will also
be considered. In particular, the dynamic strategy, that acts so as to compensate for the inertia, could be
improved by adding the information of the external load (e.g., measured with the Myo armband or a
forcemyography sensor, as reported in Islam and Bai, 2019).

Additionally, the effects of the exoskeleton use on other parts of the body or side effects have to be
further investigated. In fact, while back muscle activity was shown to be reduced using the exoskeleton,
other muscles (e.g., leg or abdominal muscles) could increase their activity. As an example, in fully flexed
postures, the activity of the abdominal muscles increases, as found for the Laevo during static holding
tasks (Koopman et al., 2019b). However, in this work, we decided not to investigate the effects of our
exoskeleton on the activation of leg and abdominal muscles. In fact, when our previous prototype was
tested during lifting and lowering tasks, no significant difference was found in the abdominal muscle
activation, while the biceps femoris activity was even reduced (Huysamen et al., 2018). Furthermore, also
varying the lifting technique when using the exoskeleton may lead to significant changes in the activation
of the different muscle groups (Frost et al., 2009). For this reason, and also to underline additional effects
of the exoskeleton, changes in the lifting behavior should be better analyzed. For example, the fact that the
lifting technique adopted when using the exoskeleton may reduce some risk factors (e.g., the lumbar
flexion angle or the execution speed) without preventing the execution of the movement can be an
additional advantage.While the focus of this workwas on symmetric lifting and lowering tasks, the effects
of the exoskeleton on reducing the asymmetry of themovement may be explored aswell, as trunk twisting
has been proven to increase the risk of developing low back pain (McGill 1991; Shan et al., 2013).

Conclusions

Using the exoskeleton during lifting tasks reduced the compression force on the L5S1 disc, and
correspondingly, the risk of developing back-related MSDs might decrease. Statistically significant
reductions in peak lumbar extensor moment and peak spinal muscle activity were achieved when using
the exoskeleton controlled with the three different strategies. Contrary to our expectations, substantial
differences between the control strategies in the reductions of compression force, lumbar moment, and
back muscle activation were not observed. Nonetheless, based on the results obtained, positive effects are
expectedwith all the strategies in reducing themuscle effort and the overall exertion perceived by the user,
as well as on increasing the endurance time.

The new control strategy reduced the movement speed less with respect to the other two strategies.
Specifically, it improved the timing of the assistance in relation to the typical dynamics of the target task,
and it reduced the hindrance to fast movement, thereby promoting intuitiveness and comfort.
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