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ABSTRACT

Postural instability is one of the major symptoms of Parkinson’s disease. Here, we assimilated a model of intermittent delay feedback control
during quiet standing into postural sway data from healthy young and elderly individuals as well as patients with Parkinson’s disease to
elucidate the possible mechanisms of instability. Specifically, we estimated the joint probability distribution of a set of parameters in the
model using the Bayesian parameter inference such that the model with the inferred parameters can best-fit sway data for each individual. It
was expected that the parameter values for three populations would distribute differently in the parameter space depending on their balance
capability. Because the intermittent control model is parameterized by a parameter associated with the degree of intermittency in the control,
it can represent not only the intermittent model but also the traditional continuous control model with no intermittency. We showed that
the inferred parameter values for the three groups of individuals are classified into two major groups in the parameter space: one represents
the intermittent control mostly for healthy people and patients with mild postural symptoms and the other the continuous control mostly for
some elderly and patients with severe postural symptoms. The results of this study may be interpreted by postulating that increased postural
instability in most Parkinson’s patients and some elderly persons might be characterized as a dynamical disease.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0022319

Falls are a public health issue in the aging societies.1 They are a
major cause of fatal and non-fatal injuries,2 which can shorten
the life expectancy. Thus, falls prevention should be a priority
for our societies. Because nonlinear characteristics of temporal
patterns of postural sway during upright quiet stance have been
linked to individual fall risks,3 understanding the neural control
mechanisms of how such sway patterns are generated is a key to
assessing postural stability. Here, we analyzed a number of pos-
tural sway measures from healthy young and elderly individuals
as well as neurological patients to elucidate the mechanisms of

postural stability and how it is altered by aging and neurological
disorders. Despite the large stochasticity that hinders determinis-
tic components in sway, we provide evidence of bifurcations that
causes postural instability due to changes in the underlying neural
control strategy.

I. INTRODUCTION

Symptoms associated with postural instability are common in
patients with Parkinson’s disease, and they become more prominent
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with disease progression, which causes falls and diminished quality
of life.4 Contrary to popular belief, neuromechanical mechanisms of
human upright posture during quiet stance are still subject to debate.
Consequently, pathophysiology that causes postural instability in
Parkinson’s disease is still poorly understood.

The intermittent time-delayed feedback control, referred to as
the intermittent control in this study, is one of the novel hypothet-
ical neural strategies for stabilizing upright posture during quiet
stance.5–7 Intermittency and discontinuity in the action of nonlinear
postural controllers have been well established in the literature.5–18

Although recent studies are beginning to associate intermittency
with a healthy control strategy and loss of intermittency with deteri-
oration in postural function,19,20 it is still controversial whether such
time-discontinuous, nonlinear controllers are more physiologically
plausible compared to the traditional time-continuous linear con-
trollers, i.e., the stiffness and impedance controllers as models of
healthy strategy for postural stabilization.

Among many of the traditional models,21–23 the majority have
simply adopted a linear proportional (P) and derivative (D) feedback
controller with a large signal transmission time delay and additive
colored noise, i.e., the time-continuous delayed PD feedback control
model.24–28 On the other hand, the intermittent control model that
we adopt in this study is a hybrid dynamical system that switches
between two unstable subsystems in a state-dependent manner,
driven by additive white noise.6,7 Unlike other models of postu-
ral control with seemingly similar intermittent characteristics,8–11,15

our intermittent control model exploits two types of instability.
One is generated by the off-subsystem (open-loop control system),
which exhibits unstable dynamics of purely mechanical inverted
pendulum-like human body in the absence of the active feedback
control, due to the fact that intrinsic (i.e., passive) ankle stiffness
is not sufficient for stabilizing the upright posture,29,30 whereby the
upright posture is characterized by a saddle-type unstable equilib-
rium with stable and unstable manifolds in the phase space. The
other is generated by the on-subsystem (closed-loop control system),
which is exactly the same as the traditional continuous PD feedback
control model, if it were adopted persistently without switching but
with P and D gain values that exhibit delay-induced unstable oscilla-
tions. Note that typical P and D gains of the on-subsystem used for
the intermittent control model are much smaller than those used for
the continuous model, using which the on-subsystem is unstable for
the former, and it is stable for the latter. In the intermittent control
model, switching between those two unstable dynamics in an appro-
priate state-dependent manner makes the overall dynamics stable,
where the switching function is implemented in such a way that
the feedback controller is switched off when the state vector of the
inverted pendulum is near the stable manifold of the saddle, and it is
switched on otherwise. To avoid misunderstanding of our model,
it is worthwhile to note that the switching between two unstable
dynamics in the intermittent control model provides a stabiliza-
tion mechanism qualitatively different from the well-known model
of “open-loop and closed-loop control of posture”8,31 that exploits
another type of intermittency. In the case of the “open-loop and
closed-loop control of posture”8,31 and also in many other models
with intermittency,9–11,15 stability of the upright posture is ensured
by the stable dynamics of closed-loop control mechanisms, in which
the rate of convergence for every closed-loop interval is (statistically)

greater than the rate of divergence for the corresponding open-loop
interval. Contrastingly, in our intermittent control model,6 both
closed- and open-loop dynamics are unstable, but the rate of con-
vergence along the stable manifold of the open-loop dynamics until
termination of the open-loop control can be (statistically) greater
than the rate of divergence for the corresponding delay-induced
oscillation in the closed-loop dynamics, leading to overall stability of
the hybrid system. The important role played by the stable manifold
in the intermittent control model is conceptually similar to that in
the OGY chaos control that also exploits a stable manifold of a saddle
point to make chaotic dynamics periodic.32 The difference between
them is a way to exploit the stable manifold. A chaotic meandering
behavior and a delay-induced unstable oscillation are exploited by
the system to make the state point close to the stable manifold in the
OGY and the intermittent control models, respectively.

The first objective of this study is to demonstrate that the inter-
mittent control model is more physiologically plausible compared to
the continuous PD feedback control model, as a healthy strategy for
postural stabilization. This will be achieved using a Bayesian param-
eter inference to identify model parameters using which the model
can statistically and optimally reproduce a diverse set of sponta-
neous postural sway data. Although a similar attempt has been made
previously based on the continuous PD feedback control model,27

the range of optimal parameter exploration of the current study is
much wider compared to the previous study. This is because the
continuous control model can be considered as part of the intermit-
tent control model by the switching function of the intermittency
parameterized by some parameters that determine state-dependent
switching between the off- and the on-subsystems. That is, a region
in the state space (referred to as the off-region) assigned for selecting
the off-subsystem can be varied, and if we employ such parameter
values that make the off-region null, the intermittent control model
can never be switched to the off-subsystem, i.e., the intermittent
control model becomes equivalent to the continuous control model.
Therefore, our parameter exploration for the intermittent control
model can examine whether behaviors of the intermittent control
model are optimized by the parameter values that make the off-
region null (or small) for representing the continuous control model
or those to ensure a large area of the off-region for the intermittent
control model.

The second objective is our main contribution, in which we
examine a novel hypothesis that explores association between the
loss of intermittency in postural control and deterioration of pos-
tural function.19,20 Specifically, we will apply the Bayesian parameter
inference on the intermittent control model using published data
of spontaneous sway from healthy elderly subjects and patient with
Parkinson’s disease and compare them to the data obtained from
healthy young subjects. Previously, Maurer and colleagues have per-
formed similar explorations based on the continuous PD feedback
model.27,33 They found that increases in stiffness and damping, i.e.,
P and D gains of the continuous controller and a large increase in
the noise level with aging and postural symptoms in patients with
Parkinson’s disease could account for a variety of sway measures
reported in the literature for elderly and patients.34,35 For example,
increase in the sway amplitude due to therapeutic intervention36 can
be explained by the PD control model with smaller P and D gains
compared to the corresponding parameters for patients with severe
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postural instability. This is contrary to the past view that regards
large sway amplitude as a sign of decreased postural stability.37 Mod-
erately large sway amplitude, as a sign of preferable or improved
postural function, might be counter-intuitive. However, it has been
reported occasionally.34,38,39 From a theoretical viewpoint, we are
interested in alternative mechanisms (model-based interpretations)
that can be obtained from the intermittent control model, instead
of the continuous control model, for such severity-dependent vari-
ations in the measures of postural sway. Namely, we are interested
in whether the loss of intermittency from the intermittent control
model can be a major cause of postural instability due to aging and
progression of Parkinson’s disease.

In Sec. II, we introduce the intermittent control model, and
dynamics of the model are quantified by several summary mea-
sures that are used for the Bayesian parameter inference. Moreover,
stability analysis of the continuous control model is performed,
which is helpful for understanding the intermittent control model.
Section III describes methodologies of the Bayesian parameter infer-
ence. Results of the parameter inference are shown in Sec. IV, while
we discuss our results in Sec. V.

II. THE INTERMITTENT CONTROL MODEL

A. The single inverted pendulum model

Upright posture during quiet standing is often modeled by a
single inverted pendulum in the sagittal plane.40 Distal end of the
pendulum is fixed in the plane by a pin joint as the ankle joint. The
linearized motion equation for small angles and angular velocities
can be formulated as

Iϕ̈(t) = mghϕ(t) + T(t), (1)

where ϕ is the tilt angle, I is the moment of inertia of the upright
body around the ankle, g is the gravity acceleration, m is the body
mass, h is the distance from the ankle to the center of mass (CoM) of
the pendulum, and T is the total ankle torque. mghϕ represents the
linearized gravitational toppling torque. For small values of ϕ and ϕ̇,
T may be modeled as

T(t) = −Kϕ(t) − Bϕ̇(t) + Tact(t) + Tnoise(t), (2)

where the first two terms on the right-hand side represent passive
feedback torques generated by the intrinsic mechanical impedance
of the ankle joint (K and B are the passive stiffness and viscos-
ity, respectively) with no time delay. The third term Tact represents
the active neural feedback torque determined by the central ner-
vous system as a function of delay-affected tilt angle ϕ1 ≡ ϕ(t − 1)

and angular velocity ω1 ≡ ω(t − 1) ≡ ϕ̇(t − 1), with 1 being the
feedback delay time due to the neural signal transmission. The last
term Tnoise is an endogenous noise modeled by the standard Gaus-
sian white noise ξ with standard deviation σ . Using ω ≡ ϕ̇, the state
space representation of Eq. (1) can be rewritten as

dϕ

dt
= ω, (3)

dω

dt
= kϕ − bω + Tact(ϕ1, ω1)/I + σξ/I, (4)

where k ≡ (mgh − K)/I and b ≡ B/I. According to the experimen-
tal evaluations of the passive ankle visco-elasticity,29,30 we set as
K = 0.8 mgh N m/rad and B = 4.0 N m s/rad and assume that they
are constant throughout the study. Thus, mgh − K > 0, and the
upright state (ϕ, ω) = (0, 0) is an unstable equilibrium of saddle
type,6 with stable and unstable manifolds when no active control is
provided, i.e., when Tact = 0.

B. The continuous control model

The traditional continuous control and the intermittent control
models employ the same PD controller but in a strongly different
manner. The continuous control model uses the PD controller in
a conventional manner,27 i.e., continuously in time, which is why
we call it the continuous controller. It generates the active feedback
torque in Eq. (2), denoted by Tcont

act , formulated as

Tcont
act (t) = −Pϕ1 − Dω1, (5)

where P and D are the gains of proportional and derivative con-
trollers, respectively. Stability of the continuous control model for a
given delay 1 is determined by the characteristic equation of Eq. (1),

s2 + bs − k + (D/I)s exp(−1s) + (P/I) exp(−1s) = 0, (6)

when K − mgh < 0. Stability boundary in the P–D parameter plane
can be obtained using Stepan’s formula41 as a function of � for s =
j� with j2 = −1,

(

P(�)/I
D(�)/I

)

=
(

(�2 + k) cos(�1) + b� sin(�1)

(�2 + k) sin(�1)/� − b cos(�1)

)

. (7)

For � = 0, Eq. (6) becomes

− k + P/I = 0, (8)

meaning that P = mgh − K is part of the stability boundary. Depict-
ing a curve on P–D plane by varying �, together with P = mgh − K,
we have a stability region of the continuous control model in the
P–D plane as Fig. 1 for several delays 1, showing that the stability
region diminishes as 1 increases.

C. The intermittent control model

In the intermittent control model, the PD controller is switched
on and off intermittently, depending on the delayed state of the
pendulum6 (Fig. 2). The corresponding active feedback torque in
Eq. (2), denoted by Tint

act, is formulated as

Tint
act(t) =

{

−Pϕ1 − Dω1, if (ϕ1, ω1)T ∈ Son,

0, otherwise if (ϕ1, ω1)T ∈ Soff,
(9)

where Son and Soff define two regions in the ϕ–ω plane, by which
the state-dependent activation and inactivation of the active torque
are determined. In Fig. 2(b), Soff is represented by gray regions and
Son by white regions. The parameters P and D are gains of the
PD controller when it is activated. The PD controller is activated
when the delayed state (ϕ1, ω1) is located in Son, while it is inac-
tivated when (ϕ1, ω1) is in Soff. Son and Soff are separated by the
boundaries defined by ϕ1 = 0, ω1 = lϕ1, and ϕ2

1 + ω2
1 = r2. The

parameter r determines the small circular sensory dead zone around
the upright position. The parameter l determines the slope of the
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FIG. 1. Stability boundary of the continuous control model in the P–D parameter
plane for several values of delay 1 = 0.1, 0.2, 0.3, 0.4, and 0.5 s. The stability
region for 1 = 0.2 s is indicated by the gray area. Because the on-subsystem of
the intermittent control model is the same as the continuous control model, this
map is also used for analyzing the stability of the on-subsystem with its persistent
use.

on-off boundary line ω1 = lϕ1. In this study, we define the param-
eter ρ that represents the ratio of Son/(Son + Soff), with neglecting
the small sensory dead zone for simplicity. That is, by using the
slope l, ρ ≡ 0.5 − arctan(l)/π . ρ = 1, if the PD controller is contin-
uously turned on (i.e., if Soff is null), which represents the continuous
control model. ρ < 1.0, if the PD controller is switched off for a non-
zero area of Soff, which represents the intermittent control model.
ρ = 0 represents the inverted pendulum with no active controllers
all the time. In this way, the continuous control model is part of
the intermittent control model parameterized by the parameter ρ.
Our choice of the complicated geometry of Soff has been encouraged
by our preliminary study on reinforcement learning for stabilizing
inverted pendulum based on the information of the time-delayed
state point.42 That is, the energetically optimal choice of Soff might
not be necessarily composed of simple thresholds for the tilt angle
of the inverted pendulum as in other controller models8–10,15 with
intermittent on-off switching mechanisms.

We refer the system with the PD controller for the intermittent
control model to as on-subsystem, whereas that without the PD con-
troller to as off-subsystem. In the intermittent control model, the sys-
tem switches between the on- and off-subsystems. Overall dynamics
of the intermittent control model heavily depend on dynamics of
the on-subsystem. Since the on-subsystem, if it were persistently
activated, is identical with the continuous control model, dynam-
ics (including stability) of the on-subsystem can be characterized
by the stability map shown in Fig. 1. Typically, the intermittent
control model operates with small P and D gains,6 for which the
(P, D) of the on-subsystem is located outside (below) the stability
region as exemplified by the (P, D) point indicated by the diamond-
shaped symbol in Fig. 1. In this case, the system switches between
two types of unstable dynamics as illustrated in Fig. 2(c). One is
the saddle type instability of the off-subsystem. The other is delay-
induced unstable oscillation of the on-subsystem due to the delay

1 in active feedback control. The rationale of the intermittent con-
trol strategy is that the unstable dynamics of the on-subsystem can
be exploited, in the sense that the actively driven spiraling out of
the state point may provide an opportunity to transverse the stable
manifold of the off-subsystem at some time, and inactivation of the
active feedback controller at that time would trigger another tran-
sient behavior approaching the saddle point along or near the stable
manifold of the off-subsystem. Thus, the intermittent controller can
achieve bounded stability with limit cycle oscillation of the upright
posture.5

D. Summary measures of postural sway

Figure 3 exemplifies dynamics of the intermittent control
model for ρ = 0.62 (operated as the intermittent model) and for
ρ = 1.0 (operated as the continuous control model), where the CoM
positions xCoM in the anterior–posterior direction are calculated
as xCoM = hϕ to be compared with experimental sway data. See
Appendix A for numerical integrations of the stochastic differen-
tial equations in Eqs. (3) and (4). For both cases, time-delay is set as
1 = 0.2 s. As mentioned above, the (P, D) parameters for the former
case are set as P = 147 = 0.25 mgh N m/rad and D = 10 N m s/rad,
which results in unstable dynamics of the on-subsystem. This can be
confirmed by the (P, D) point located outside the stability region,
as indicated by the diamond-shaped symbol in Fig. 1. Note that
the noise intensity is very small at σ = 0.2, but the sway dynam-
ics exhibit slow fluctuation with a relatively large amplitude. These
parameters are determined ad hoc to mimic postural sway of healthy
people under the intermittent control hypothesis, but they will be
validated quantitatively in this study. For the latter case, ρ = 1.0
(the continuous control model), where the gain values are set as
P = 471(= 0.8 mgh) N m/rad and D = 270 N m s/rad. In this case,
the (P, D) point is located inside the stability region, as indicated
by the open circle in Fig. 1. These P–D values have been used by
the previous study27 to mimic optimally postural sway of healthy
people under the continuous control hypothesis. Note that the sway
amplitude is small, in comparison with the former intermittent case
because of the small noise intensity (σ = 0.2). This value is about
one tenth of the noise intensity used in the previous study.27 That
is, the continuous control model requires large noise intensity to
show sway amplitudes similar to human postural sway. Moreover, it
requires low-pass filtered colored noise for mimicking postural sway
of healthy people.

In Fig. 3, sample trajectories on the xCoM–vCoM plane are also
depicted. Moreover, other characterizations of the sway time series
are shown for each of the intermittent and the continuous control
models. They include histograms of (1) |xCoM|, (2) |vCoM| represent-
ing the CoM velocity, (3) |aCoM| representing the CoM acceleration,
and power spectral densities (PSD) of (4) xCoM, (5) vCoM, and (6)
aCoM. These six histograms are used as the summary measures for
the approximate Bayesian computation (ABC) as described below.
Each histogram can also be characterized by its median value or
by the slope of linear regression line for PSD of xCoM at the low-
frequency regime (−β), and peak frequencies in the PSDs for CoM
velocity and acceleration. In particular, as in Fig. 3(a), postural
sway of the intermittent control model exhibits a power-law-like
behavior,6,7,10,43 characterized by the scaling exponent β , which is
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FIG. 2. The intermittent control model. (a) The block diagram of the model. (b) A typical example of the on- and off-regions in the ϕ–ω plane. (c) Schematic illustration of
how the switching between two unstable dynamics can bound the state point around the upright position.

known to be close to 3/2 for healthy young people. β values for
the continuous control model are usually small [close to zero in
Fig. 3(b)], implying that sway patterns of the continuous control
model in the low-frequency regime are similar to white noise.

In this sequel, we summarize how the above-mentioned six
summary measures are computed, for both experimental and sim-
ulated time series. There are some preprocessing procedures specif-
ically for experimental and simulated time series. For experimental
data, we need to obtain CoM time series from the center of pres-
sure (CoP) data, which were measured by a force platform. See
Appendix B for this transformation. Then, a linear trend of the CoM
time series was removed. We denote the linear-detrended CoM sig-
nal by xCoM or simply x[n] for the discretized time n. Velocity v[n]
(or vCoM) and acceleration a[n] (or aCoM) were approximated as

v[n] =
x[n + 1] − x[n − 1]

2/fs
, a[n] =

v[n + 1] − v[n − 1]

2/fs
, (10)

where fs is the sampling frequency (fs = 100 Hz). The absolute val-
ues |x[n]|, |v[n]|, and |a[n]| were represented as the histograms with
15 bins for each. The bin-width was adjusted for each experimental
time series data, where we determined the maximum value of the

histogram by taking a smaller value of either the maximum absolute
value in the data or three times of standard deviation of the data, and
divided it by 15. PSD for each of x[n], v[n], and a[n] was calculated
via 75% overlapped Fast Fourier Transform with 40 s rectangular
time window for each time series. Then, powers at 10 frequencies
equally spaced in logarithmic scale were selected up to 1.5 Hz. Each
of all histograms and PSDs was normalized so that the sum of val-
ues of the histogram (15 values) or that of the PSD (10 values)
becomes unity. In this way, we obtained the 75-dimensional sum-
mary measure vector, composed of all elements of the six summary
measures.

Computation of the summary measures for simulated CoM
data (xCoM = hϕ) was performed in the same way as that for exper-
imental data. For a given experimental data, we first computed its
75-dimensional summary measure vector, which determined the
bin-width of each histogram. Those bin-width values were used in
common for the histograms to characterize simulated data gener-
ated during exploring/inferring the parameter values, specifically for
these experimental data. We employed a feat specifically to obtain
the histogram of acceleration only for simulated time series. This
was because CoM accelerations computed by Eq. (10) for simulated
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FIG. 3. Typical dynamics of the intermittent control model. (a) The parameter point (P/mgh,D, ρ,1, σ , r) = (0.25, 10, 0.62, 0.2, 0.2, 0.004). (b) The parameter point
(P/mgh,D, ρ,1, σ , r) = (0.8, 270, 1.0, 0.2, 0.2, 0), meaning that the model in this case operates as the continuous control model. In each, a sample trajectory on the
xCoM–vCoM plane is depicted on the right of the waveform. Moreover, other characterizations of the sway time series are shown for each sway pattern. For the panels below
the waveform, from left to right, they are the histograms of |xCoM|, |vCoM| representing the CoM velocity and model-based estimation of the CoM acceleration, and the power
spectral densities (PSDs) of xCoM, vCoM, and aCoM representing the CoM acceleration. Orange points in each graph represent elements of summary measures. See the text.

time series were excessively affected by the additive noise, due to
the Euler approximation of the stochastic differential equation. That
is, as in Eq. (A4) in Appendix B, the discretized ωn (v[n] = hωn)
is influenced directly by the addition of white noise Wn. Thus,
computation of accelerations from the differences between succes-
sive ωn estimates too large accelerations, which caused large dif-
ferences between the histogram of acceleration for simulated and

experimental time series. To avoid this problem, the angular accel-
eration, referred to as α̃n, was approximated using the vector field of
the model as

α̃n = kϕn − bωn + Tact(ϕn−d, ωn−d)/I, (11)

without adding white noise Wn, where d is the discretized delay.
In this case, (ϕn, ωn) and (ϕn−d, ωn−d) are affected by white noise,
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TABLE I. Summary of participants.

Subject type No. of subjects Age

Healthy young 21 22.9 ± 1.8
Healthy elderly 21 70.0 ± 5.3
PD patients 272 71.3 ± 7.8
UPDRS [sum(27:30)] 5.53 ± 2.73/16 points

but they are smoothed by the integration for obtaining a solution. A
sequence of α̃n values was used for computing the histogram of CoM
acceleration for simulated data. However, we used a[n] in Eq. (10)
for computing PSD of CoM acceleration for simulated data.

III. METHOD FOR THE PARAMETER INFERENCE

A. Postural sway data

We used 70 s long CoP time series data during quiet stand-
ing with eyes-open, measured from 155 PD patients (81 males and
74 females), age-matched 21 healthy elderly people (9 males and
12 females), and 21 healthy young adults (21 males). The UPDRS
(Unified Parkinson’s Disease Rating Scale) Part III was used for
quantifying the severity of motor symptom. Here, we used the sum
of scores for items from 27 to 30 that are related to posture and gait
functions. The zero point means no symptom, and the 16 points are
for the most severe symptom. See Table I for the mean score of the
patients. Most data have been acquired and analyzed in our previous
studies. More specifically, data were taken from four studies.39,44–46

See those literatures for full details of CoP measurements. Some
data from PD patients were newly obtained by the same protocol
with the previous studies at Osaka Toneyama Medical Center, for
which all subjects gave informed consent approved by the ethical
committees of Osaka Toneyama Medical Center. Moreover, some
PD patients participated in the measurement several times at dif-
ferent days separated more than a few months. We regarded those
data measured from identical individuals with PD at different days
as the ones from different patients because they might show differ-
ent sway characteristics depending on the severity of the patient at
the measurement day. Therefore, the total number of PD patients
was considered 272. Except for the healthy elderly, each subject per-
formed more than two trials of quiet standing at each session, with
sufficient resting time between trials. In this study, we randomly
picked two trials data from all trials for each participant and used
them for computing the summary measures. Then, averaged mea-
sures were used for the parameter inference for each subject. Since
healthy elderly subjects performed only one trial, the summary mea-
sures for each subject were computed from the single trial. For all
data, the sampling frequency of the CoP acquisition was fs = 100 Hz.

B. Overview of ABC-SMC

We use a technique of parameter inference using the
approximate Bayesian computation (ABC) based on Sequential
Monte Carlo sampling (SMC)47 with high performance computing
resources for estimating multiple parameters of a highly nonlinear
stochastic dynamical system model. More specifically, the Bayesian

inference provides a framework for identifying values of parameters
θ of the model, which would lead to a model-generated data that is
sufficiently similar to the observed data y0 by means of the likelihood
function L(θ). That is, according to Bayes’ theorem,

p(θ |y0) ∝ L(θ)p(θ), (12)

where p(θ) is the prior joint probability distribution of the parame-
ters and p(θ |y0) is the posterior joint probability distribution given
(conditional) the observed data. However, it is almost impossible to
compute the likelihood function due to the complexity of the system
or the unobservable random quantities in the model.

To deal with this issue, approximate Bayesian computation
(ABC) has been developed and widely used,48 in which parameter
values are inferred using summary measures, denoted by 8obs for
the observed data, without computing the likelihood function. In the
ABC algorithm, a candidate parameter vector θ is randomly gener-
ated according to initial beliefs of the parameter distributions p(θ),
and dynamics of the model with the parameter vector y(θ) is numer-
ically simulated. Then, summary measures for the model-simulated
data, denoted by 8sim, are also computed. If the “distance” between
8obs and 8sim, which measures the discrepancy between the two
data sets in the sense of the summary measures, is smaller than a
threshold value ε, the parameter vector θ is accepted and registered
as an element of posterior distribution of the parameters. Thus, ABC
algorithm samples from the posterior distribution of the parameters
by finding values that yield simulated data sufficiently resembling
the observed data, and the sampling is continued until the number
of registered element becomes N.

The approximate Bayesian computation based on Sequential
Monte Carlo sampling (ABC-SMC) is one of the extended algorithm
of ABC, which iterates ABC algorithm sequentially with changing
the threshold value ε smaller gradually. In this study, we assimi-
lated the intermittent control model into postural sway data using
the ABC-SMC, as in Tietavainen et al.16 That is, we performed ABC-
SMC to infer parameters of the intermittent control model. We
considered six parameters (P, D, ρ, 1, σ , r) of the intermittent con-
trol model, and their values were inferred by the SMC-ABC. Other
parameters were fixed in this study. Body mass m of each subject
was determined by the weight of the subject. However, h was fixed
as 1 m. The moment of inertia I was calculated as mh2. The pas-
sive elastic and viscosity coefficients were set as K = 0.8mgh and
B = 4.0 as mentioned before. The prior distribution of each parame-
ter was assumed to be the uniform distribution within a given range
as follows. P ∈ [0, 500], D ∈ [0, 500], ρ ∈ [0.3, 1.0], 1 ∈ [0, 0.5],
σ ∈ [0, 3.0], r ∈ [0, 0.01].

For simulations, the initial state was set as ϕ(0) = η, ω(0) = 0,
and ϕ(τ) = ω(τ) = 0 for −1 ≤ τ < 0, where η was a uniformly
distributed random number in [−0.01, 0.01] rad. The stochastic dif-
ferential equations of the model were numerically integrated using
the Euler–Maruyama method with time step 1t = 0.001 s. Each
simulated data were resampled with the sampling frequency of
100 Hz. The first 20 s was discarded, and the remaining 70 s long
simulation data were used for computing the summary measures. As
described in Sec. II, the summary measure for each of experimental
sway data 8obs and simulated data 8sim was 75-dimensional vector.

In this study, the distance between 8obs and 8sim was calcu-
lated using Jensen–Shannon divergence49 DJS, which is based on
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Kullback–Leibler divergence DKL, defined as

DJS(8obs||8sim) ≡
1

2
(DKL (8obs||M) + DKL (8sim||M)) , (13)

where

M ≡
1

2
(8obs + 8sim) (14)

and

DKL(Q||R) ≡
75

∑

i=1

Q log

(

Q

R

)

, (15)

where the index i of summation indicates the number of elements
consisting of the summary measure vector. ABC-SMC was per-
formed with the initial threshold ε = 1 and N = 500, and continued
until the ABC-SMC session reached the threshold ε = 0.01, or the
computation time was exhausted.

After the first ABC-SMC session was terminated, we examined
whether the obtained posterior distribution of each parameter, i.e.,
each of six marginal distributions, exhibited multiple peaks (mul-
timodality) or not. If none of six marginal distributions exhibited
multimodality, the parameter inference and data assimilation were
completed. However, if some of them exhibited multimodality with
multiple peaks with sufficient valleys between them, we tried to
improve the parameter inference, where ABC-SMC was performed
again, but now starting from a non-uniformly distributed prior dis-
tribution. Namely, the posterior marginal distributions of the first
ABC-SMC were divided into two sets of parameter values, according
to the valleys of the posterior marginal distributions, and two prior
joint distributions, each of which was composed of one of the two
sets, were constructed. Then, the second ABC-SMC session was per-
formed using each of the two prior joint distributions as in the first
ABC-SMC session. By comparing the resultant two posterior dis-
tributions, we took one of them that showed smaller variance with
single mode as the posterior distribution to complete the inference.
However, if both of two posterior distributions still exhibited multi-
modality, we considered that the postural sway data for that subject
could not be fitted by the intermittent control model, and the data
were discarded from the subsequent analysis.

In this study, we used three High Performance Computers
[one HPC5000 10Core (3.1 GHz) × 2CPU, RAM 64GB and two
HPC5000 12Core (3.1 GHz) × 2CPU, RAM 64GB, HPC SYSTEMS].
We used 64 cores simultaneously. Eight cores were assigned for the
parameter inference of sway data from a single subject, and thus
the parameter inference using ABC-SMC was performed for eight
subjects in parallel, which was completed by about 12 h, if all infer-
ences were successfully completed only by the first session. The
computation time could be much longer if second sessions were
required.

C. Classification of inferred parameter points

For each experimental data with 8obs, we obtained six posterior
marginal distributions. We then characterized each of them by the
mode value. Thus, each experimental data with 8obs were charac-
terized by a six-dimensional parameter point (P, D, ρ, 1, σ , r). After
completing the data assimilation for all data, we obtained a number

TABLE II. Number of discarded and successful subjects.

Young Elderly Patients

No. of subjects 21 21 272
No. of discarded subjects due to inadequate convergence

1 3 19
No. of discarded due to multimodality in distribution

1 2 17
No. of successful inference 19 16 236

of parameter points distributed in the six-dimensional parameter
space. Each point characterizes individual postural sway based on
the model.

Because we recognized that distributions of the parameter val-
ues of σ and r in the six-dimensional parameter space were rela-
tively homogeneous, we performed the hierarchical cluster analysis
to classify the parameter points in the four-dimensional space of
(P, D, ρ, 1). To this end, each of four parameters was standardized
so that the mean and variance were zero and unity, respectively.
Then, according to the centroid clustering method, hierarchical
clusters were constructed using the L2 norm. A statistically meaning-
ful number of groups (clusters), referred to as n∗, was determined by
the upper-tail method.50 In this method, for a given number of clus-
ters n, distances between all possible combinations of centroids of
the n clusters denoted by di,j for i, j ∈ {1, . . . , n} were computed, by
which the minimum distance an was obtained as an = mini,j(di,j).
Then, n∗ was determined as the largest number that satisfies an∗

< ā + kσ for a positive integer k, where ā =
∑N

n=2 an/(N − 1) and

σ =
√

∑N
n=2 (an − ā)2/(N − 2) with N being the number of data

points. We used k = 3 and k = 4, which are said to be appropri-
ate for N of several hundreds. After clustering, all parameter points
were plotted on the P–D plane, separately for each cluster, with sta-
bility region of the on-subsystem for the inferred delay 1, by which
we examined whether the parameter points were located inside or
outside the stability region for the on-subsystem.

IV. RESULTS

The parameters could be inferred successfully for sway data
from most subjects (271 out of 314 subjects). Details of discarded
data of 43 subjects are summarized in Table II. Figure 4 summa-
rizes the hierarchical cluster analysis for the 271 inferred param-
eter points of (p, D, ρ, 1, σ , r) in the four-dimensional space of
(p, D, ρ, 1), where p = P/mgh. Four to five clusters (groups) were
determined as statistically meaningful by the upper-tail method, for
which we discarded tiny clusters composed of only nine data in
total as indicated by “ungrouped data” in Fig. 4. According to the
result of the upper-tail method, we decided to consider five groups,
which were clustered into two major groups. One major group (data
from 150 out of 271 subjects) was composed of the groups A and B,
and the other major group (data from 112 out of 271 subjects) was
composed of the groups C, D, and E.

For the major group with groups A and B, the inferred ρ

values were distributed between 0.4 and 0.6, meaning that the
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FIG. 4. Classification of the inferred parameter points. Left part is a dendrogram obtained by the hierarchical cluster analysis, composed of 271 successfully inferred parameter
points as indicated by small dots for healthy young (column Y) and elderly (column E) and Parkinson’s patients (column P). Tables at the middle are the breakdown of subjects
classified into each group, with mean and standard deviation of UPDRS. The inferred parameter point used for simulating representative sway for each group at the right is as
follows (p = P/mgh): Group A: p = 0.27, D = 4, ρ = 0.61,1 = 0.36, σ = 0.27, r = 0.001. Group B: p = 0.49, D = 102, ρ = 0.41,1 = 0.26, σ = 0.28, r = 0.0008.
Group C: p = 0.22, D = 190, ρ = 0.63,1 = 0.37, σ = 0.27, r = 0.001. Group D: p = 0.35, D = 171, ρ = 0.95,1 = 0.26, σ = 0.22, r = 0.0003. Group E: p = 0.34,
D = 263, ρ = 0.99, 1 = 0.007, σ = 0.53, r = 0.0005. In each experimental sway data, CoP (gray) and CoM (black) are superposed.
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model operates with the intermittent strategy (Fig. 5). As shown
in Fig. 4, sway data from almost all healthy young participants (16
out of 18 subjects) were classified into this major group. In rep-
resentative experimental sway and model-simulated sway with its
inferred parameter values for each of the groups A and B, CoM
sway exhibited slow variations with relatively large amplitudes.
The xCoM–vCoM planes for the model with the inferred parame-
ters show that the PD controller is switched off when the state
point is located near the second or the fourth quadrant of the
plane. The mean value of posture and gait related UPDRS for the
patients classified into group A was 4.6 out of 16 points, which
was much smaller than that for the other patients. Specifically,
mode and median values of the posterior marginal distributions
for group A were (p, D, ρ, 1, σ) = (0.29, 6, 0.58, 0.35, 0.12, 0.0006)
and (0.32, 15, 0.58, 0.36, 0.13, 0.001), respectively. Those for group
B were (p, D, ρ, 1, σ) = (0.49, 72, 0.42, 0.33, 0.14, 0.0008) and (0.49,
84, 0.43, 0.34, 0.17, 0.0011), respectively. The inferred (P, D) points
of the on-subsystem for groups A and B were mostly located outside
(below) the stability region in the P–D parameter plane for delay
1 about 0.2–0.4 s, as in Figs. 5(a) and 5(b), respectively. Particu-
larly, D values were very close to zero for group A [Fig. 5(a)]. This
means that the model with those inferred parameter values operates
as the intermittent control model that switches between two unsta-
ble dynamics of the off- and on-subsystems. The large amplitude
characteristics of group A can be confirmed by broadly distributed
shape of the posterior marginal distribution of xCoM with the median
value of 3.4 mm as shown in Fig. 5(a). Values of the scaling exponent
β for the PSD of xCoM were close to 3/2 (1.71 for group A and 1.21
for group B).

The other major group was composed of groups C, D, and
E. As shown in Fig. 4, ρ values for groups D and E were close to
1.0. Thus, the model with the inferred parameter values for groups
D and E operates with the continuous strategy. However, ρ values
for the group C were close to 0.5, indicating that group C oper-
ates with the intermittent strategy. As shown in Fig. 4, two healthy
young subjects, other than 16 subjects in groups A and B, were
classified in group C, but none of healthy young subjects were clas-
sified in groups D and E. Mean values of posture and gait related
UPDRS for the groups D and E were 6.6 and 8.4 out of 16 points,
which were larger than the mean value for patients in groups A,
B, and C (Fig. 4). In representative experimental sway and model-
simulated sway with its inferred parameter values for each of groups
D and E, CoM sway amplitudes were relatively small. This can be
confirmed by the less-distributed posterior marginal distribution of
xCoM with the median value of 2.1 and 2.3 mm for groups D and
E, respectively, as shown in Figs. 6(b) and 6(c). Experimental and
simulated sway data for group C were similar to those in groups
A and B. The xCoM–vCoM planes for the model with the inferred ρ

values for group C show that the off-region Soff was also similar to
that of group A. Specifically, mode and median values of group C
were (p, D, ρ, 1, σ) = (0.22, 135, 0.61, 0.49, 0.17, 0.0011) and (0.24,
135, 0.64, 0.40, 0.18, 0.0014), respectively. Those for group D were
(p, D, ρ, 1, σ) = (0.26, 171, 0.96, 0.30, 0.15, 0.0006) and (0.26, 177,
0.94, 0.33, 0.24, 0.0011), respectively. Those for group E were
(p, D, ρ, 1, σ) = (0.46, 177, 0.98, 0.005, 0.53, 0.0008) and (0.44, 222,
0.96, 0.015, 0.66, 0.0011), respectively. The (P, D) points of the on-
subsystem for groups C, D, and E were located inside the stability

region of the on-subsystem as shown in Figs. 6(a)–6(c), which is
achieved by large values of the D gain for groups C, D, and E. This
means that the model for groups C, D, and E switches between stable
dynamics of the on-subsystem and unstable dynamics of the off-
subsystem. That is, the stabilizer of the model for these groups is
the convergent dynamics of the on-subsystem. Values of the scal-
ing exponent β for the PSD of xCoM were 1.08 for group D and
0.91 for group E, which were smaller than those for groups A,
B, and C. Note that the inferred values of feedback delay 1 for
group E were almost zero. Moreover, the inferred noise intensities
of group E were about four times larger than those of the other
groups.

V. DISCUSSION

A. Summary

The intermittent delay feedback control model was assimilated
into postural sway data from healthy young and elderly subjects as
well as patients with Parkinson’s disease. A joint probability distri-
bution of the parameter point (P, D, ρ, 1, σ , r) of the model was
inferred for the sway data of each subject using the ABC-SMC
method. Particularly, we focused on the parameters ρ representing
the ratio of on-region/(on-region+off-region) in the phase plane:
ρ ∼ 1.0 implies the model stabilized by the traditional continu-
ous control strategy, while ρ ∼ 0.5 implies the intermittent control
model. Hierarchical cluster analysis based on the mode values of
the inferred marginal distributions for four parameters (P, D, ρ, 1)

uncovered two major groups within the parameter space. Based on
the discussion which we will present next, we conclude that the one
group represents stabilization by the intermittent control strategy
(i.e., the intermittent control group) and the other by the continuous
control strategy (i.e., the continuous control group).

B. Intermittent vs continuous control strategies

For the intermittent control group (150 out of 271 subjects), ρ
values were close to 0.5 with small D gains. More specifically, (P, D)

points for the on-subsystem were mostly located below the stabil-
ity region in the P–D parameter plane (Fig. 5), implying that people
belong to this major group stabilize upright posture by the conver-
gent dynamics along the stable manifold of the off-subsystem.5–7

Sway data of almost all healthy young participants (16 out of 18
subjects) were better fitted by the intermittent control model rather
than the continuous control model. Intermittent control for group
A can be considered high efficiency based on the following char-
acterizations. The ρ values for group A were distributed between
0.5 and 0.6, which means that the PD controller is switched off
when the state point is located in the second or the fourth quad-
rant of the phase plane, as shown in Fig. 4 (top). The (P, D) points
of the on-subsystem for group A were located completely below
the stability region [Fig. 5(a)]. Particularly, D values were very
close to zero. Moreover, P values were also small (around 0.3 mgh).
Thus, the intermittent control model with those parameter values
is highly energetically efficient,43,51 because energy consumption is
zero (null) when the system is operated with the off-subsystem, and
it is also close to zero even when the system is operated with the on-
subsystem, because the P and D gains (and thus the active feedback
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FIG. 5. Distribution of the inferred parameters of (P,D) points on the P–D parameter plane for different inferred delay 1 (top), six summary measures (middle), and the
posterior marginal distributions of six parameter values averaged across people belong to group A in (a) and to group B in (b). In the histograms of summary measures,
median values for |xCoM|, |vCoM|, and |aCoM| and the scaling exponent β for CoM spectrum are shown. Vertical dotted lines in the posterior distributions are the mode values
of the distributions.
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torque) of the on-subsystem are very small. Intermittent control for
group B might also be energetically efficiency but to a lesser degree
compared to group A. This is because ρ values for group B were
distributed around 0.4, which means wider off-regions than group
A. As discussed previously,6 the wide off-region for the intermit-
tent control model requires large P gains as well as large D gains
for stability, although the (P, D) points for group B were located
mostly below the stability region of the on-subsystem [Fig. 5(b)].
Posture and gait related UPDRS scores for the patients belonging to
group A were smallest among those belonging to the other groups,
followed by the scores for group B. This means that postural bal-
ancing capability of patients in groups A and B was less affected,
while they are still capable of utilizing the intermittent control
strategy.

Moreover, 112 out of 271 subjects were classified into the con-
tinuous control group (the groups belonging to C, D, and E), includ-
ing two healthy young subjects in group C. ρ values for groups D
and E were close to 1.0, indicating that the system never utilizes the
off-subsystem. ρ values for group C were close to 0.5, implying inter-
mittent switching between the off- and the on-subsystems. However,
the (P, D) points used for the on-subsystem of group C were located
inside the stability region in the P–D parameter plane [Fig. 6(a)].
Thus, we regarded the model with such stable on-subsystem as a type
of continuous control model, although the model switches between
the off- and the on-subsystems. This is because the stability of the
upright posture in this case is achieved by stable dynamics of the
on-subsystem, as in the typical continuous control model, not by the
convergent dynamics of the off-subsystem. In other words, upright
standing of people belonging to this major group is stabilized by the
stable dynamics of the on-subsystem. People belonging to this major
group are mostly subpopulations of elderly and Parkinson’s patients.
Specifically, posture and gait related UPDRS scores for the patients
belonging to the continuous control group were notably larger com-
pared to those of the patients belonging to the intermittent control
group.

Group D represents a typical continuous control strategy. The
parameter points for group D are close to the one estimated by many
studies that utilized the traditional continuous control model.25 The
inferred P and D gains, particularly D gains, are notably larger than
those for the intermittent control group, suggesting that continu-
ous control strategy is energetically inefficient. Moreover, large P
and D gains imply inflexible ankle joint (inflexible upright posture),
as recognized by some previous studies.34,38,39 Scaling exponent at
the low-frequency regime of the PSD of the CoM sway was smaller
than β ∼ 3/2, and relatively close to 0 as discussed earlier.6,52 That
is, the PSD of CoM without scaling behavior at the low-frequency
regime (closer to white noise) indicates a loss of intermittency in
the feedback control. Posture and gait related UPDRS scores for
patients belonging to the typical continuous control group were sec-
ond largest, implying that these subjects exhibited severe postural
symptoms.

Group E, in the continuous group, can be considered the non-
reactive control group because the inferred values of the time delay
1 were almost zero. This means that the feedback controller is
not affected by time-lags for the signal transmission. This situa-
tion represents the traditional stiffness control, advocating that the
stabilization of upright posture during quiet stance is achieved by

stiffness of the ankle muscles.22 Stiffness control assumes that the
central nervous system (CNS) does not actively change the level of
motoneuron activation that determines stiffness of ankle muscles
and the consequent stiffness of ankle joint during quiet stance even
in the presence of small postural fluctuation (postural sway), but it
is predetermined by the CNS in a feedforward manner. Thus, the
feedback controller for the stiffness control is mathematically equiv-
alent to the passive stiffness that does not involve any time delay.
Because the inferred P and D gains for group E, particularly D gain
values, were very large, we conclude that the upright stance of peo-
ple in this group is rigidly stabilized in a non-reactive manner using
large values of the passive elasticity and viscosity at the ankle joints.
Together with the fact that posture and gait related UPDRS scores
for the patients belonging to the non-reactive control group were
the largest, individuals in this group exhibited the most severe pos-
tural symptoms, and their ankle joints might also be too inflexible to
induce postural fluctuations.38,39,46

C. Relation to other studies

The results of this study, which are based on the intermittent
control model, have similarities and discrepancies compared to the
model-based characterization by Maurer and colleagues that utilizes
the continuous control model.27,33 A similarity is an overall qualita-
tive tendency of large feedback gains to characterize postural insta-
bility with severe symptoms in patient with Parkinson’s disease. This
is simply because the intermittent-control-model-based parameter
exploration in this study inferred the continuous control model for
sway data from patients with severe postural symptoms. Regardless,
postural inflexibility in patient with Parkinson’s disease might be
well characterized by continuous control strategy with larger feed-
back gains. Discrepancies become evident in quantitative character-
izations of sway data from healthy people. The intermittent-control-
model-based parameter exploration inferred an intermittent control
model with small values of P gain and very small values of D gain
for the on-subsystem. It also inferred a small noise intensity. On
the other hand, continuous-control-model-based parameter explo-
ration might infer relatively large values of D gain and large noise
intensity. Large values of the D gain are inevitable for the continu-
ous control model to avoid delay-induced instability, which imposes
a large noise intensity to counteract strong damping force due to
large D gain for generating relatively large postural sway observed in
healthy people. Note that the intermittent control model can gener-
ate oscillatory slow sway with relatively large amplitude even if the
model is driven by white noise of very small intensity by the nature
of the control strategy.52

For some groups obtained in this study, the posterior distribu-
tions showed relatively large deviations (i.e., less sharp peaks). For
example, D gain values in groups B and E and the delay parameter 1

in group C were broadly distributed. Such uncertainty in the param-
eter estimation might be related to the sensitivity of the inverted
pendulum balance control model. In this regard, it is important to
recognize a critical difference in the sensitivity between the continu-
ous and intermittent control models. The continuous control model
is sensitive to the D gain,53 because a large delay 1 makes the stability
region small (the delay-induced instability), which enforces a tuned
large value of the D gain for maintaining stability. Contrastingly, the
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FIG. 6. The same legend as Fig. 5 for people belong to groups C, D, and E.
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FIG. 6. Continued.

intermittent control model is quite insensitive to the D gain in the
wide area of small D gain regime. This is because stability of the
intermittent control model is very robust against the variation of
D value, as shown in our previous study,6 which is a major cause
of the uncertainty in the D value. Moreover, in the intermittent
control model, a large value of the delay 1 should be accompa-
nied by a large area of the off-region (ρ value smaller than 1.0,
typically around 0.5–0.6) and also a small value of the D gain for
making the switching system stable because the delay-induced insta-
bility of the on-subsystem should be compensated by the use of
the off-subsystem. This way, values of the D and 1 are mutually
dependent oppositely in the continuous and the intermittent control
models.

ABC-SMC performed in this study for postural sway data
is based on the work by Tietavainen et al.,16 with a critical
improvement in the metric for quantifying distances between sets of
summary measures. That is, the use of the Jensen–Shannon diver-
gence (similar to Kullback–Leibler divergence) improved the accu-
racy of parameter inference, particularly for differentiating between
continuous and intermittent control models. This improvement was
needed since we considered a wider range of parameter exploration
compared to Tietavainen et al.16 across the boundary separating the
intermittent and continuous control models.

There are other methodologies useful for parameter estima-
tions of nonlinear dynamical systems. The intermittent control

model used in this study has been applied for parameter estima-
tion by a Kalman filter based method17 and by Adaptive Gaussian
process approximation.54 In particular, McKee and Neale17 applied
their method to postural sway data from healthy people and reported
similar parameter values as our current study. Both methodologies
reported relatively large values of time delay 1 ∼ 0.3–0.4 s, which
should be compared with a typical delay of about 0.2 s, as esti-
mated previously.25 Although this issue can be argued further, we
will address it in the future.

Buza et al.55 and Milton et al.56 studied motor control during
balancing tasks, in which they also tried to trace a path in the param-
eter space that is associated with a simple feedback controller and/or
a prediction-based feedback controller, as human subjects become
familiar with and expert of the tasks. In the case with moderate insta-
bility in the task, a linear delay feedback controller may be employed,
in which the gain parameters may converge to an optimal point in
the parameter space, leading to high linear stability with energeti-
cally efficiency.55 In the case with large instability, such as during
short-stick balancing, the gain parameters tend to converge to the
edge of stability for either with continuous controllers56 or with
time-discontinuous intermittent controllers.57,58 The latter situation
for expert subjects may be analogous to the high-efficiency inter-
mittent control strategy implemented with the (P, D) points near
(but outside) the edge of linear stability region for the on-subsystem
[Fig. 5(a)].
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Finally, some of the recent studies that used the intermittent
postural control model suggest that intermittency in the feedback
control is harmful and that it can lead to postural instability.59,60

However, the results of our current study are apparently contra-
dictory to those previous studies. Such discrepancy may be due to
inadequate (non-systematic) parameter exploration, by which one
might overlook the beneficial aspects of the intermittent control
strategy.

D. Postural instability as a dynamical disease

Overall, the results of our current study may be interpreted
by postulating that increased postural instability of most Parkin-
son’s patients and some elderly persons might be characterized as
a dynamical disease.61–63 Indeed, it has been demonstrated that a
sequence of period-doubling or period-doubling-like bifurcations
occurs as a parameter that determines the (size of) off-regions in
the phase plane, corresponding to ρ in this study, changes.52 This
means that dynamics of the intermittent control model and those
of the continuous control model are qualitatively different and that
transitions between them are accomplished through the sequence of
bifurcations.

In this study, inference of postural control strategy was per-
formed using sway data acquired from a number of people acquired
at a single or a few different instances of time. Such a “transverse
study” that could provide hard evidence of a transition between dif-
ferent control strategies (with an increasing ρ-parameter) is almost
impossible to carry out in practice. However, one might consider
observing sway data from the same subject over very long periods of
time with an increasing physical or mental load, expecting to observe
transitions and an increase in the value of ρ.
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APPENDIX A: EULER–MARUYAMA SCHEME

The state space representation of the model equations (3)
and (4) is rewritten as

dϕ

dt
(t) = ω(t), (A1)

dω

dt
(t) = f(ϕ(t), ω(t), ϕ1, ω1) +

σ

I
ξ(t). (A2)

The Euler approximation of this simultaneous stochastic delay
differential equations with a fixed time step 1t = tn+1 − tn

(n = 0, 1, . . .) is then described as

ϕn+1 = ϕn + ωn1t, (A3)

ωn+1 = ωn + f(ϕn, ωn, ϕn−d, ωn−d)1t +
σ

I
Wn

√
1t, (A4)

where d = 1/1t. Wn is independent Gaussian random variables
with mean E[Wn] = 0, variance E[W2

n] = 1, and autocorrelation
E[WnWm] = δnm.

APPENDIX B: ESTIMATION OF CoM FROM CoP DATA

The transformation from CoP to CoM was performed as fol-
lows. First, anterior–posterior component of the CoP signal was
low-pass filtered using the fourth-order zero-phase-lag Butterworth
filter with the cutoff frequency of 10 Hz. Then, CoM positions were
estimated from the filtered CoP using the filter proposed by Morasso
et al.64 defined as

G(�) =
g/he

�2 + g/he

, (B1)

where � is the angular frequency and he is the parameter of “effec-
tive distance.” In this study, we set he = 1 as a typical value, because
it has been shown that the transform from CoP to CoM is less
dependent on the value of he.
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