Book section Open Access

Differential Equations for Feynman Graph Amplitudes

Ettore Remiddi

It is by now well established that, by means of the integration by part identities, all the integrals occurring in the evaluation of a Feynman graph of given topology can be expressed in terms of a few independent master integrals. It is shown in this paper that the integration by part identities can be further used for obtaining a linear system of first order differential equations for the master integrals themselves. The equations can then be used for the numerical evaluation of the amplitudes as well as for investigating their analytic properties, such as the asymptotic and threshold behaviours and the corresponding expansions (and for analytic integration purposes, when possible). The new method is illustrated through its somewhat detailed application to the case of the one loop self-mass amplitude, by explicitly working out expansions and quadrature formulas, both in arbitrary continuous dimension n and in the n \to 4 limit. It is then shortly discussed which features of the new method are expected to work in the more general case of multi-point, multi-loop amplitudes.

Files (175.8 kB)
Name Size
9711188v2.pdf
md5:16f16724fa177e7962e6b5a415809735
175.8 kB Download
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as