Journal article Closed Access
Vittorino Pata
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://www.openaccessrepository.it/record/100349</identifier> <creators> <creator> <creatorName>Vittorino Pata</creatorName> </creator> </creators> <titles> <title>Exponential stability in linear viscoelasticity</title> </titles> <publisher>INFN Open Access Repository</publisher> <publicationYear>2006</publicationYear> <subjects> <subject>Applied Mathematics</subject> </subjects> <dates> <date dateType="Issued">2006-04-06</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://www.openaccessrepository.it/record/100349</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1090/s0033-569x-06-01010-4</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://www.openaccessrepository.it/communities/itmirror</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/closedAccess">Closed Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>We address the study of the asymptotic behavior of solutions to an abstract integrodifferential equation modeling linear viscoelasticity. Framing the equation in the past history setting, we analyze the exponential stability of the related semigroup S ( t ) S(t) with dependence on the convolution kernel, providing a more general sufficient condition than the usual one present in the literature.</p></description> </descriptions> </resource>
Views | 0 |
Downloads | 0 |
Data volume | 0 Bytes |
Unique views | 0 |
Unique downloads | 0 |