Journal article Closed Access
S De Lillo; Mark J. Ablowitz
{ "conceptrecid": "138236", "created": "2023-09-29T03:01:41.913857+00:00", "doi": "10.1016/s0375-9601(00)00358-3", "id": 138237, "links": { "badge": "https://www.openaccessrepository.it/badge/doi/10.1016/s0375-9601%2800%2900358-3.svg", "doi": "https://doi.org/10.1016/s0375-9601(00)00358-3", "html": "https://www.openaccessrepository.it/record/138237", "latest": "https://www.openaccessrepository.it/api/records/138237", "latest_html": "https://www.openaccessrepository.it/record/138237" }, "metadata": { "access_right": "closed", "access_right_category": "danger", "communities": [ { "id": "itmirror" } ], "creators": [ { "name": "S De Lillo" }, { "name": "Mark J. Ablowitz" } ], "description": "Abstract A method to solve a one-phase Stefan problem associated to the Burgers equation is outlined. It is shown that the problem admits an exact solution which is a shock wave. The shock wave travels with the appropriate free boundary velocity and is found to be stable.", "doi": "10.1016/s0375-9601(00)00358-3", "keywords": [ "General Physics and Astronomy" ], "language": "eng", "license": { "id": "other-open" }, "notes": "", "publication_date": "2000-07-01", "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "138237" }, "parent": { "pid_type": "recid", "pid_value": "138236" } } ] }, "resource_type": { "subtype": "article", "title": "Journal article", "type": "publication" }, "title": "Solutions of a Burgers\u2013Stefan problem" }, "owners": [ 14 ], "revision": 1, "stats": { "downloads": 0.0, "unique_downloads": 0.0, "unique_views": 0.0, "version_downloads": 0.0, "version_unique_downloads": 0.0, "version_unique_views": 0.0, "version_views": 0.0, "version_volume": 0.0, "views": 0.0, "volume": 0.0 }, "updated": "2023-09-29T03:01:42.004628+00:00" }
Views | 0 |
Downloads | 0 |
Data volume | 0 Bytes |
Unique views | 0 |
Unique downloads | 0 |