Journal article Closed Access
Dong-Uk Hwang; Vito Latora; Stefano Boccaletti
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://www.openaccessrepository.it/record/141631</identifier> <creators> <creator> <creatorName>Dong-Uk Hwang</creatorName> </creator> <creator> <creatorName>Vito Latora</creatorName> </creator> <creator> <creatorName>Stefano Boccaletti</creatorName> </creator> </creators> <titles> <title>GROWING HIERARCHICAL SCALE-FREE NETWORKS BY MEANS OF NONHIERARCHICAL PROCESSES</title> </titles> <publisher>INFN Open Access Repository</publisher> <publicationYear>2007</publicationYear> <subjects> <subject>Knowmad Institut</subject> <subject>Applied Mathematics</subject> <subject>Modeling and Simulation</subject> <subject>Engineering (miscellaneous)</subject> </subjects> <dates> <date dateType="Issued">2007-07-01</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://www.openaccessrepository.it/record/141631</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/s0218127407018518</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://www.openaccessrepository.it/communities/itmirror</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/closedAccess">Closed Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">We introduce a fully nonhierarchical network growing mechanism, that furthermore does not impose explicit preferential attachment rules. The growing procedure produces a graph featuring power-law degree and clustering distributions, and manifesting slightly disassortative degree-degree correlations. The rigorous rate equations for the evolution of the degree distribution and for the conditional degree-degree probability are derived.</description> </descriptions> </resource>
Views | 0 |
Downloads | 0 |
Data volume | 0 Bytes |
Unique views | 0 |
Unique downloads | 0 |