Journal article Closed Access
Caserta, Agata
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://www.openaccessrepository.it/record/178906</identifier> <creators> <creator> <creatorName>Caserta, Agata</creatorName> <givenName>Agata</givenName> <familyName>Caserta</familyName> <affiliation>Department of Mathematics, Seconda Università degli Studi di Napoli, Caserta, Italy</affiliation> </creator> </creators> <titles> <title>Strong Whitney convergence</title> </titles> <publisher>INFN Open Access Repository</publisher> <publicationYear>2012</publicationYear> <subjects> <subject>General Mathematics</subject> </subjects> <dates> <date dateType="Issued">2012-11-26</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://www.openaccessrepository.it/record/178906</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.2298/fil1201081c</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://www.openaccessrepository.it/communities/itmirror</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/closedAccess">Closed Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">The notion of strong uniform convergence on bornologies introduced in 2009. by Beer-Levi turns to give the classical convergence introduced by Arzel? in 1883. Evert in 2003. introduced the notion of Arzel?-Whitney or simply AW-convergence for a net of functions. We define a new type of convergence, a "strong" form of Whitney convergence on bornologies, and we prove that on some families it coincides with that AW-convergence. Furthermore, we study the countability properties of this new function space.</description> </descriptions> </resource>
Views | 0 |
Downloads | 0 |
Data volume | 0 Bytes |
Unique views | 0 |
Unique downloads | 0 |