Journal article Closed Access

Strong Whitney convergence

Caserta, Agata


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://www.openaccessrepository.it/record/178906</identifier>
  <creators>
    <creator>
      <creatorName>Caserta, Agata</creatorName>
      <givenName>Agata</givenName>
      <familyName>Caserta</familyName>
      <affiliation>Department of Mathematics, Seconda Università degli Studi di Napoli, Caserta, Italy</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Strong Whitney convergence</title>
  </titles>
  <publisher>INFN Open Access Repository</publisher>
  <publicationYear>2012</publicationYear>
  <subjects>
    <subject>General Mathematics</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2012-11-26</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://www.openaccessrepository.it/record/178906</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.2298/fil1201081c</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://www.openaccessrepository.it/communities/itmirror</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/closedAccess">Closed Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">The notion of strong uniform convergence on bornologies introduced in 2009.
   by Beer-Levi turns to give the classical convergence introduced by Arzel? in
   1883. Evert in 2003. introduced the notion of Arzel?-Whitney or simply
   AW-convergence for a net of functions. We define a new type of convergence, a
   "strong" form of Whitney convergence on bornologies, and we prove that on
   some families it coincides with that AW-convergence. Furthermore, we study
   the countability properties of this new function space.</description>
  </descriptions>
</resource>
0
0
views
downloads
Views 0
Downloads 0
Data volume 0 Bytes
Unique views 0
Unique downloads 0

Share

Cite as