Journal article Open Access

Plasmonic quantum effects on single-emitter strong coupling

Ciracì Cristian; Jurga Radoslaw; Khalid Muhammad; Della Sala Fabio


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution 4.0</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <controlfield tag="001">28743</controlfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">AbstractCoupling between electromagnetic cavity fields and fluorescent molecules or quantum emitters can be strongly enhanced by reducing the cavity mode volume. Plasmonic structures allow light confinement down to volumes that are only a few cubic nanometers. At such length scales, nonlocal and quantum tunneling effects are expected to influence the emitter interaction with the surface plasmon modes, which unavoidably requires going beyond classical models to accurately describe the electron response at the metal surface. In this context, the quantum hydrodynamic theory (QHT) has emerged as an efficient tool to probe nonlocal and quantum effects in metallic nanostructures. Here, we apply state-of-the-art QHT to investigate the quantum effects on strong coupling of a dipole emitter placed at nanometer distances from metallic particles. A comparison with conventional local response approximation (LRA) and Thomas-Fermi hydrodynamic theory results shows the importance of quantum effects on the plasmon-emitter coupling. The QHT predicts qualitative deviation from LRA in the weak coupling regime that leads to quantitative differences in the strong coupling regime. In nano-gap systems, the inclusion of quantum broadening leads to the existence of an optimal gap size for Rabi splitting that minimizes the requirements on the emitter oscillator strength.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Plasmonic quantum effects on single-emitter strong coupling</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Jurga Radoslaw</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Khalid Muhammad</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Della Sala Fabio</subfield>
  </datafield>
  <controlfield tag="005">20200609133206.0</controlfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1515/nanoph-2019-0199</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Ciracì Cristian</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1594880</subfield>
    <subfield code="u">https://www.openaccessrepository.it/record/28743/files/fulltext.pdf</subfield>
    <subfield code="z">md5:58c44b3c65b527c28363d9074f130242</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-08-01</subfield>
  </datafield>
</record>
29
51
views
downloads
Views 29
Downloads 51
Data volume 81.3 MB
Unique views 27
Unique downloads 49

Share

Cite as