Journal article Open Access

Biodegradation of mixture of plastic films by tailored marine consortia

Evdokia Syranidou; Katerina Karkanorachaki; Filippo Amorotti; Apostolos Avgeropoulos; Boris Kolvenbach; Ning-Yi Zhou; Fabio Fava; Philippe F.-X. Corvini; Nicolas Kalogerakis


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://www.openaccessrepository.it/record/37078</identifier>
  <creators>
    <creator>
      <creatorName>Evdokia Syranidou</creatorName>
    </creator>
    <creator>
      <creatorName>Katerina Karkanorachaki</creatorName>
    </creator>
    <creator>
      <creatorName>Filippo Amorotti</creatorName>
    </creator>
    <creator>
      <creatorName>Apostolos Avgeropoulos</creatorName>
    </creator>
    <creator>
      <creatorName>Boris Kolvenbach</creatorName>
    </creator>
    <creator>
      <creatorName>Ning-Yi Zhou</creatorName>
    </creator>
    <creator>
      <creatorName>Fabio Fava</creatorName>
    </creator>
    <creator>
      <creatorName>Philippe F.-X. Corvini</creatorName>
    </creator>
    <creator>
      <creatorName>Nicolas Kalogerakis</creatorName>
    </creator>
  </creators>
  <titles>
    <title>Biodegradation of mixture of plastic films by tailored marine consortia</title>
  </titles>
  <publisher>INFN Open Access Repository</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Environmental Engineering</subject>
    <subject>Waste Management and Disposal</subject>
    <subject>Pollution</subject>
    <subject>Health, Toxicology and Mutagenesis</subject>
    <subject>Environmental Chemistry</subject>
    <subject>European Union FP-7 project BIOCLEAN</subject>
    <subject>H2020 project INMARE</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-08-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://www.openaccessrepository.it/record/37078</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jhazmat.2019.04.078</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://www.openaccessrepository.it/communities/itmirror</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivatives</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Summarization: This work sheds light on the physicochemical changes of naturally weathered polymer surfaces along with changes of polymer buoyancy due to biofilm formation and degradation processes. To support the degradation hypothesis, a microcosm experiment was conducted where a mixture of naturally weathered plastic pieces was incubated with an indigenous pelagic community. A series of analyses were employed in order to describe the alteration of the physicochemical characteristics of the polymer (FTIR, SEC and GPC, sinking velocity)as well as the biofilm community (NGS). At the end of phase II, the fraction of double bonds in the surface of microbially treated PE films increased while changes were also observed in the profile of the PS films. The molecular weight of PE pieces increased with incubation time reaching the molecular weight of the virgin pieces (230,000 g mol−1)at month 5 but the buoyancy displayed no difference throughout the experimental period. The number-average molecular weight of PS pieces decreased (33% and 27% in INDG and BIOG treatment respectively), implying chain scission; accelerated (by more than 30%)sinking velocities compared to the initial weathered pieces were also measured for PS films with biofilm on their surface. The orders Rhodobacterales, Oceanospirillales and Burkholderiales dominated the distinct platisphere communities and the genera Bacillus and Pseudonocardia discriminate these assemblages from the planktonic counterpart. The functional analysis predicts overrepresentation of adhesive cells carrying xenobiotic and hydrocarbon degradation genes. Taking these into account, we can suggest that tailored marine consortia have the ability to thrive in the presence of mixtures of plastics and participate in their degradation. Παρουσιάστηκε στο: Journal of Hazardous Materials</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/312100/">312100</awardNumber>
      <awardTitle>New BIOtechnologiCaL approaches for biodegrading and promoting the environmEntal biotrAnsformation of syNthetic polymeric materials</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/634486/">634486</awardNumber>
      <awardTitle>Industrial Applications of Marine Enzymes: Innovative screening and expression platforms to discover and use the functional protein diversity from the sea</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
17
63
views
downloads
Views 17
Downloads 63
Data volume 157.8 MB
Unique views 14
Unique downloads 58

Share

Cite as