Journal article Closed Access

Strong Proximal Continuity and Convergence

Agata Caserta; Roberto Lucchetti; Som Naimpally


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2013-01-01</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">closed</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Strong Proximal Continuity and Convergence</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1155/2013/412796</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-itmirror</subfield>
  </datafield>
  <controlfield tag="001">48302</controlfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">In several situations the notion of uniform continuity can be strengthened to strong uniform continuity to produce interesting properties, especially in constrained problems. The same happens in the setting of proximity spaces. While a parallel theory for uniform and strong uniform convergence was recently developed, and a notion of proximal convergence is present in the literature, the notion of strong proximal convergence was never considered. In this paper, we propose several possible convergence notions, and we provide complete comparisons among these concepts and the notion of strong uniform convergence in uniform spaces. It is also shown that in particularly meaningful classes of functions these notions are equivalent and can be considered as natural definitions of strong proximal convergence. Finally we consider a function acting between two proximity spaces and we connect its continuity/strong continuity to convergence in the respective hyperspaces of a natural functor associated to the function itself.</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Agata Caserta</subfield>
  </datafield>
  <controlfield tag="005">20200927080810.0</controlfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Applied Mathematics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Analysis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Roberto Lucchetti</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Som Naimpally</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
16
33
views
downloads
Views 16
Downloads 33
Data volume 66.6 MB
Unique views 14
Unique downloads 32

Share

Cite as