Journal article Open Access

Turning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion–Extrusion into-from Hydrophobic Nanopores

Zajdel, Paweł; Madden, David G.; Babu, Robin; Tortora, Marco; Mirani, Diego; Tsyrin, Nikolay Nikolaevich; Bartolomè, Luis; Amayuelas, Eder; Fairen-Jimenez, David; Lowe, Alexander R.; Chorązėwski, Mirosław; Leao, Juscelino B.; Brown, Craig M.; Bleuel, Markus; Stoudenets, Victor; Casciola, Carlo Massimo; Echeverría, Maria; Bonilla, Francisco; Grancini, Giulia; Meloni, Simone; Grosu, Yaroslav


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Controlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures&amp;nbsp;&lt;em&gt;via&lt;/em&gt;&amp;nbsp;proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion&amp;ndash;extrusion cycles for powdered and monolithic ZIF-8 metal&amp;ndash;organic framework were conducted by means of water porosimetry and&amp;nbsp;&lt;em&gt;in operando&lt;/em&gt;&amp;nbsp;neutron scattering. We report a drastic increase in intrusion&amp;ndash;extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion&amp;ndash;extrusion pressure using a macroscopic arrangement of nanoporous material.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-06-03</subfield>
  </datafield>
  <controlfield tag="005">20230627095531.0</controlfield>
  <controlfield tag="001">77065</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Madden, David G.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Babu, Robin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Tortora, Marco</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Mirani, Diego</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Tsyrin, Nikolay Nikolaevich</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Bartolomè, Luis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Amayuelas, Eder</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Fairen-Jimenez, David</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Lowe, Alexander R.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Chorązėwski, Mirosław</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Leao, Juscelino B.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Brown, Craig M.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Bleuel, Markus</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Stoudenets, Victor</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Casciola, Carlo Massimo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Echeverría, Maria</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Bonilla, Francisco</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Grancini, Giulia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Meloni, Simone</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Grosu, Yaroslav</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Zajdel, Paweł</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Turning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion–Extrusion into-from Hydrophobic Nanopores</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">8772081</subfield>
    <subfield code="u">https://www.openaccessrepository.it/record/77065/files/acsami.2c04314-2.pdf</subfield>
    <subfield code="z">md5:a74c58ae01066e69637422049a4eb04b</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution 4.0</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1021/acsami.2c04314</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
0
0
views
downloads
Views 0
Downloads 0
Data volume 0 Bytes
Unique views 0
Unique downloads 0

Share

Cite as