Journal article Open Access

The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I.

Jacques Breton; Roberta Croce; Tomas Morosinotto; Tomas Morosinotto; Roberto Bassi; Roberto Bassi


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-itmirror</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution 4.0</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Jacques Breton</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Roberta Croce</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Tomas Morosinotto</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Tomas Morosinotto</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Roberto Bassi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Roberto Bassi</subfield>
  </datafield>
  <controlfield tag="005">20230925081101.0</controlfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Netherlands</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Aurora Universities Network</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Cell Biology</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Molecular Biology</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Biochemistry</subfield>
  </datafield>
  <controlfield tag="001">95087</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2003-12-05</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Photosystem I of higher plants is characterized by a typically long wavelength fluorescence emission associated to its light-harvesting complex I moiety. The origin of these low energy chlorophyll spectral forms was investigated by using site-directed mutagenesis of Lhca1-4 genes and in vitro reconstitution into recombinant pigment-protein complexes. We showed that the red-shifted absorption originates from chlorophyll-chlorophyll (Chl) excitonic interactions involving Chl A5 in each of the four Lhca antenna complexes. An essential requirement for the presence of the red-shifted absorption/fluorescence spectral forms was the presence of asparagine as a ligand for the Chl a chromophore in the binding site A5 of Lhca complexes. In Lhca3 and Lhca4, which exhibit the most red-shifted red forms, its substitution by histidine maintains the pigment binding and, yet, the red spectral forms are abolished. Conversely, in Lhca1, having very low amplitude of red forms, the substitution of Asn for His produces a red shift of the fluorescence emission, thus confirming that the nature of the Chl A5 ligand determines the correct organization of chromophores leading to the excitonic interaction responsible for the red-most forms. The red-shifted fluorescence emission at 730 nm is here proposed to originate from an absorption band at approximately 700 nm, which represents the low energy contribution of an excitonic interaction having the high energy band at 683 nm. Because the mutation does not affect Chl A5 orientation, we suggest that coordination by Asn of Chl A5 holds it at the correct distance with Chl B5.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">310382</subfield>
    <subfield code="u">https://www.openaccessrepository.it/record/95087/files/fulltext.pdf</subfield>
    <subfield code="z">md5:98281cce300b3f43ab903e8b4b4faa77</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1074/jbc.m309203200</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
0
0
views
downloads
Views 0
Downloads 0
Data volume 0 Bytes
Unique views 0
Unique downloads 0

Share

Cite as