Dataset Open Access
Alessandro Bombini;
Fernando García-Avello Bofías;
Caterina Bracci;
Michele Ginolfi;
Chiara Ruberto
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.15161/oar.it/143545</identifier> <creators> <creator> <creatorName>Alessandro Bombini</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7225-3355</nameIdentifier> <affiliation>INFN, Firenze & ICSC</affiliation> </creator> <creator> <creatorName>Fernando García-Avello Bofías</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6640-8736</nameIdentifier> <affiliation>INFN, Firenze</affiliation> </creator> <creator> <creatorName>Caterina Bracci</creatorName> <affiliation>Università di Firenze & INAF, Firenze</affiliation> </creator> <creator> <creatorName>Michele Ginolfi</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9122-1700</nameIdentifier> <affiliation>Università di Firenze & INAF, Firenze</affiliation> </creator> <creator> <creatorName>Chiara Ruberto</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0321-7160</nameIdentifier> <affiliation>Università di Firenze & INFN, Firenze</affiliation> </creator> </creators> <titles> <title>Synthetic Datasets for ICSC Flagship 2.6.1. "Extended Computer Vision at high rate" paper #1 "Datacube segmentation via Deep Spectral Clustering"</title> </titles> <publisher>INFN Open Access Repository</publisher> <publicationYear>2024</publicationYear> <subjects> <subject>artificial intelligence</subject> <subject>neural networks</subject> <subject>Variational Autoencoder</subject> <subject>Deep Clustering</subject> <subject>Trained Models</subject> <subject>Flagship 2.6.1</subject> <subject>ICSC Spoke 2</subject> </subjects> <dates> <date dateType="Issued">2024-01-05</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://www.openaccessrepository.it/record/143545</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/ICSC-Spoke2-repo/FastExtendedVision-DeepCluster</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.15161/oar.it/143544</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://www.openaccessrepository.it/communities/infn</relatedIdentifier> </relatedIdentifiers> <version>20240105</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Synthetic Datasets for ICSC Flagship 2.6.1. &quot;Fast Extended Computer Vision&quot;&nbsp; paper #1 &quot;Datacube segmentation via Deep Spectral Clustering&quot;</p> <p>It is a preliminary paper for the ICSC Spoke 2 WP6 flagship 2.6.1 &quot;Fast Extended Computer Vision&quot;.</p> <p>Code repository at: https://github.com/ICSC-Spoke2-repo/FastExtendedVision-DeepCluster</p> <p>Abstract:</p> <blockquote> <p>Extended Vision techniques are a ubiquitous in physics. However, the&nbsp; data cubes steaming from such analysis often pose a challenge in their interpretation, due to the intrinsic difficulty in discerning the relevant information from the spectra composing the data cube.<br> Furthermore, the huge dimensionality of data cube spectra poses a complex task in its statistical interpretation; nevertheless, this complexity contains a massive amount of statistical information that can be exploited in an unsupervised manner to outiline some essential properties of the case study at hand, e.g.~it is possible to obtain an image segmentation via (deep) clustering of data-cube&#39;s spectra, performed in a suitably defined low-dimensional embedding space.<br> To tackle this topic, we explore the possibility of applying unsupervised clustering methods in encoded space, i.e.~perform deep clustering on the spectral properties of datacube pixels. A statistical dimensional reduction is performed by an ad hoc trained AutoEncoder, in charge of mapping spectra into lower dimensional metric spaces, while the clustering process is performed by an iterative K-Means clustering algorithm.<br> We apply this technique on two different use cases, of different physical origin: a set of MA-XRF data on pictorial artworks, and a synthetic dataset of simualted astrophysical observations.</p> </blockquote></description> <description descriptionType="Other">This work is (partially) supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU, by the European Commission within the Framework Programme Horizon 2020 with the project "4CH - Competence Centre for the Conservation of Cultural Heritage" (GA n.101004468 – 4CH) and by the project AIRES–CH - Artificial Intelligence for digital REStoration of Cultural Heritage jointly funded by the Tuscany Region (Progetto Giovani Sì) and INFN.</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |