Dataset Open Access
Alessandro Bombini;
Fernando García-Avello Bofías;
Caterina Bracci;
Michele Ginolfi;
Chiara Ruberto
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Fernando García-Avello Bofías</subfield> <subfield code="u">INFN, Firenze</subfield> <subfield code="0">(orcid)0000-0001-6640-8736</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Caterina Bracci</subfield> <subfield code="u">Università di Firenze & INAF, Firenze</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Michele Ginolfi</subfield> <subfield code="u">Università di Firenze & INAF, Firenze</subfield> <subfield code="0">(orcid)0000-0002-9122-1700</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Chiara Ruberto</subfield> <subfield code="u">Università di Firenze & INFN, Firenze</subfield> <subfield code="0">(orcid)0000-0003-0321-7160</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">dataset</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <controlfield tag="005">20240405085738.0</controlfield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.15161/oar.it/143545</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Synthetic Datasets for ICSC Flagship 2.6.1. &quot;Fast Extended Computer Vision&quot;&nbsp; paper #1 &quot;Datacube segmentation via Deep Spectral Clustering&quot;</p> <p>It is a preliminary paper for the ICSC Spoke 2 WP6 flagship 2.6.1 &quot;Fast Extended Computer Vision&quot;.</p> <p>Code repository at: https://github.com/ICSC-Spoke2-repo/FastExtendedVision-DeepCluster</p> <p>Abstract:</p> <blockquote> <p>Extended Vision techniques are a ubiquitous in physics. However, the&nbsp; data cubes steaming from such analysis often pose a challenge in their interpretation, due to the intrinsic difficulty in discerning the relevant information from the spectra composing the data cube.<br> Furthermore, the huge dimensionality of data cube spectra poses a complex task in its statistical interpretation; nevertheless, this complexity contains a massive amount of statistical information that can be exploited in an unsupervised manner to outiline some essential properties of the case study at hand, e.g.~it is possible to obtain an image segmentation via (deep) clustering of data-cube&#39;s spectra, performed in a suitably defined low-dimensional embedding space.<br> To tackle this topic, we explore the possibility of applying unsupervised clustering methods in encoded space, i.e.~perform deep clustering on the spectral properties of datacube pixels. A statistical dimensional reduction is performed by an ad hoc trained AutoEncoder, in charge of mapping spectra into lower dimensional metric spaces, while the clustering process is performed by an iterative K-Means clustering algorithm.<br> We apply this technique on two different use cases, of different physical origin: a set of MA-XRF data on pictorial artworks, and a synthetic dataset of simualted astrophysical observations.</p> </blockquote></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="a">https://github.com/ICSC-Spoke2-repo/FastExtendedVision-DeepCluster</subfield> <subfield code="i">isSupplementTo</subfield> <subfield code="n">url</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="a">10.15161/oar.it/143544</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="n">doi</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2024-01-05</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">3155395206</subfield> <subfield code="u">https://www.openaccessrepository.it/record/143545/files/Data.zip</subfield> <subfield code="z">md5:5ec92e893761b17dadd27b253534a090</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Alessandro Bombini</subfield> <subfield code="u">INFN, Firenze & ICSC</subfield> <subfield code="0">(orcid)0000-0001-7225-3355</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">artificial intelligence</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">neural networks</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Variational Autoencoder</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Deep Clustering</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Trained Models</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Flagship 2.6.1</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">ICSC Spoke 2</subfield> </datafield> <datafield tag="500" ind1=" " ind2=" "> <subfield code="a">This work is (partially) supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU, by the European Commission within the Framework Programme Horizon 2020 with the project "4CH - Competence Centre for the Conservation of Cultural Heritage" (GA n.101004468 – 4CH) and by the project AIRES–CH - Artificial Intelligence for digital REStoration of Cultural Heritage jointly funded by the Tuscany Region (Progetto Giovani Sì) and INFN.</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-infn</subfield> </datafield> <controlfield tag="001">143545</controlfield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Synthetic Datasets for ICSC Flagship 2.6.1. "Extended Computer Vision at high rate" paper #1 "Datacube segmentation via Deep Spectral Clustering"</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/</subfield> <subfield code="a">Creative Commons Attribution 4.0</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |