Dataset Open Access
Alessandro Bombini;
Fernando García-Avello Bofías;
Caterina Bracci;
Michele Ginolfi;
Chiara Ruberto
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Alessandro Bombini</dc:creator> <dc:creator>Fernando García-Avello Bofías</dc:creator> <dc:creator>Caterina Bracci</dc:creator> <dc:creator>Michele Ginolfi</dc:creator> <dc:creator>Chiara Ruberto</dc:creator> <dc:date>2024-01-05</dc:date> <dc:description>Synthetic Datasets for ICSC Flagship 2.6.1. "Fast Extended Computer Vision" paper #1 "Datacube segmentation via Deep Spectral Clustering" It is a preliminary paper for the ICSC Spoke 2 WP6 flagship 2.6.1 "Fast Extended Computer Vision". Code repository at: https://github.com/ICSC-Spoke2-repo/FastExtendedVision-DeepCluster Abstract: Extended Vision techniques are a ubiquitous in physics. However, the data cubes steaming from such analysis often pose a challenge in their interpretation, due to the intrinsic difficulty in discerning the relevant information from the spectra composing the data cube. Furthermore, the huge dimensionality of data cube spectra poses a complex task in its statistical interpretation; nevertheless, this complexity contains a massive amount of statistical information that can be exploited in an unsupervised manner to outiline some essential properties of the case study at hand, e.g.~it is possible to obtain an image segmentation via (deep) clustering of data-cube's spectra, performed in a suitably defined low-dimensional embedding space. To tackle this topic, we explore the possibility of applying unsupervised clustering methods in encoded space, i.e.~perform deep clustering on the spectral properties of datacube pixels. A statistical dimensional reduction is performed by an ad hoc trained AutoEncoder, in charge of mapping spectra into lower dimensional metric spaces, while the clustering process is performed by an iterative K-Means clustering algorithm. We apply this technique on two different use cases, of different physical origin: a set of MA-XRF data on pictorial artworks, and a synthetic dataset of simualted astrophysical observations. </dc:description> <dc:identifier>https://www.openaccessrepository.it/record/143545</dc:identifier> <dc:identifier>10.15161/oar.it/143545</dc:identifier> <dc:language>eng</dc:language> <dc:relation>url:https://github.com/ICSC-Spoke2-repo/FastExtendedVision-DeepCluster</dc:relation> <dc:relation>doi:10.15161/oar.it/143544</dc:relation> <dc:relation>url:https://www.openaccessrepository.it/communities/infn</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/</dc:rights> <dc:subject>artificial intelligence</dc:subject> <dc:subject>neural networks</dc:subject> <dc:subject>Variational Autoencoder</dc:subject> <dc:subject>Deep Clustering</dc:subject> <dc:subject>Trained Models</dc:subject> <dc:subject>Flagship 2.6.1</dc:subject> <dc:subject>ICSC Spoke 2</dc:subject> <dc:title>Synthetic Datasets for ICSC Flagship 2.6.1. "Extended Computer Vision at high rate" paper #1 "Datacube segmentation via Deep Spectral Clustering"</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 0 | 0 |
Downloads | 0 | 0 |
Data volume | 0 Bytes | 0 Bytes |
Unique views | 0 | 0 |
Unique downloads | 0 | 0 |