Journal article Closed Access
Riccardo Iandolo; Marianna Semprini; Stefano Buccelli; Federico Barban; Mingqi Zhao; Jessica Samogin; Gaia Bonassi; Laura Avanzino; Dante Mantini; Michela Chiappalone
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://www.openaccessrepository.it/record/46656</identifier> <creators> <creator> <creatorName>Riccardo Iandolo</creatorName> </creator> <creator> <creatorName>Marianna Semprini</creatorName> </creator> <creator> <creatorName>Stefano Buccelli</creatorName> </creator> <creator> <creatorName>Federico Barban</creatorName> </creator> <creator> <creatorName>Mingqi Zhao</creatorName> </creator> <creator> <creatorName>Jessica Samogin</creatorName> </creator> <creator> <creatorName>Gaia Bonassi</creatorName> </creator> <creator> <creatorName>Laura Avanzino</creatorName> </creator> <creator> <creatorName>Dante Mantini</creatorName> </creator> <creator> <creatorName>Michela Chiappalone</creatorName> </creator> </creators> <titles> <title>Small-World Propensity Reveals the Frequency Specificity of Resting State Networks</title> </titles> <publisher>INFN Open Access Repository</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Neuroinformatics</subject> </subjects> <dates> <date dateType="Issued">2020-01-09</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://www.openaccessrepository.it/record/46656</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ojemb.2020.2965323</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://www.openaccessrepository.it/communities/itmirror</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/closedAccess">Closed Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Goal: Functional connectivity (FC) is an important indicator of the brain's state in different conditions, such as rest/task or health/pathology. Here we used high-density electroencephalography coupled to source reconstruction to assess frequency-specific changes of FC during resting state. Specifically, we computed the Small-World Propensity (SWP) index to characterize network small-world architecture across frequencies. Methods: We collected resting state data from healthy participants and built connectivity matrices maintaining the heterogeneity of connection strengths. For a subsample of participants, we also investigated whether the SWP captured FC changes after the execution of a working memory (WM) task. Results: We found that SWP demonstrates a selective increase in the alpha and low beta bands. Moreover, SWP was modulated by a cognitive task and showed increased values in the bands entrained by the WM task. Conclusions: SWP is a valid metric to characterize the frequency-specific behavior of resting state networks. ispartof: IEEE Open Journal of Engineering in Medicine and Biology status: accepted</description> </descriptions> </resource>
Views | 22 |
Downloads | 38 |
Data volume | 139.6 MB |
Unique views | 20 |
Unique downloads | 37 |