Journal article Closed Access
Riccardo Iandolo; Marianna Semprini; Stefano Buccelli; Federico Barban; Mingqi Zhao; Jessica Samogin; Gaia Bonassi; Laura Avanzino; Dante Mantini; Michela Chiappalone
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">closed</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Marianna Semprini</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Stefano Buccelli</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Federico Barban</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Mingqi Zhao</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Jessica Samogin</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Gaia Bonassi</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Laura Avanzino</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Dante Mantini</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Michela Chiappalone</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-itmirror</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="a">Other (Open)</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1109/ojemb.2020.2965323</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Neuroinformatics</subfield> </datafield> <controlfield tag="005">20200927053119.0</controlfield> <controlfield tag="001">46656</controlfield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Small-World Propensity Reveals the Frequency Specificity of Resting State Networks</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-01-09</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Riccardo Iandolo</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">Goal: Functional connectivity (FC) is an important indicator of the brain's state in different conditions, such as rest/task or health/pathology. Here we used high-density electroencephalography coupled to source reconstruction to assess frequency-specific changes of FC during resting state. Specifically, we computed the Small-World Propensity (SWP) index to characterize network small-world architecture across frequencies. Methods: We collected resting state data from healthy participants and built connectivity matrices maintaining the heterogeneity of connection strengths. For a subsample of participants, we also investigated whether the SWP captured FC changes after the execution of a working memory (WM) task. Results: We found that SWP demonstrates a selective increase in the alpha and low beta bands. Moreover, SWP was modulated by a cognitive task and showed increased values in the bands entrained by the WM task. Conclusions: SWP is a valid metric to characterize the frequency-specific behavior of resting state networks. ispartof: IEEE Open Journal of Engineering in Medicine and Biology status: accepted</subfield> </datafield> </record>
Views | 22 |
Downloads | 38 |
Data volume | 139.6 MB |
Unique views | 20 |
Unique downloads | 37 |