Journal article Closed Access
Riccardo Iandolo; Marianna Semprini; Stefano Buccelli; Federico Barban; Mingqi Zhao; Jessica Samogin; Gaia Bonassi; Laura Avanzino; Dante Mantini; Michela Chiappalone
{ "conceptrecid": "46655", "created": "2020-09-27T05:31:19.416142+00:00", "doi": "10.1109/ojemb.2020.2965323", "id": 46656, "links": { "badge": "https://www.openaccessrepository.it/badge/doi/10.1109/ojemb.2020.2965323.svg", "doi": "https://doi.org/10.1109/ojemb.2020.2965323", "html": "https://www.openaccessrepository.it/record/46656", "latest": "https://www.openaccessrepository.it/api/records/46656", "latest_html": "https://www.openaccessrepository.it/record/46656" }, "metadata": { "access_right": "closed", "access_right_category": "danger", "communities": [ { "id": "itmirror" } ], "creators": [ { "name": "Riccardo Iandolo" }, { "name": "Marianna Semprini" }, { "name": "Stefano Buccelli" }, { "name": "Federico Barban" }, { "name": "Mingqi Zhao" }, { "name": "Jessica Samogin" }, { "name": "Gaia Bonassi" }, { "name": "Laura Avanzino" }, { "name": "Dante Mantini" }, { "name": "Michela Chiappalone" } ], "description": "Goal: Functional connectivity (FC) is an important indicator of the brain's state in different conditions, such as rest/task or health/pathology. Here we used high-density electroencephalography coupled to source reconstruction to assess frequency-specific changes of FC during resting state. Specifically, we computed the Small-World Propensity (SWP) index to characterize network small-world architecture across frequencies. Methods: We collected resting state data from healthy participants and built connectivity matrices maintaining the heterogeneity of connection strengths. For a subsample of participants, we also investigated whether the SWP captured FC changes after the execution of a working memory (WM) task. Results: We found that SWP demonstrates a selective increase in the alpha and low beta bands. Moreover, SWP was modulated by a cognitive task and showed increased values in the bands entrained by the WM task. Conclusions: SWP is a valid metric to characterize the frequency-specific behavior of resting state networks. ispartof: IEEE Open Journal of Engineering in Medicine and Biology status: accepted", "doi": "10.1109/ojemb.2020.2965323", "keywords": [ "Neuroinformatics" ], "language": "eng", "license": { "id": "other-open" }, "notes": "", "publication_date": "2020-01-09", "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "46656" }, "parent": { "pid_type": "recid", "pid_value": "46655" } } ] }, "resource_type": { "subtype": "article", "title": "Journal article", "type": "publication" }, "title": "Small-World Propensity Reveals the Frequency Specificity of Resting State Networks" }, "owners": [ 14 ], "revision": 1, "stats": { "downloads": 38.0, "unique_downloads": 37.0, "unique_views": 20.0, "version_downloads": 38.0, "version_unique_downloads": 37.0, "version_unique_views": 20.0, "version_views": 22.0, "version_volume": 139552264.0, "views": 22.0, "volume": 139552264.0 }, "updated": "2020-09-27T05:31:19.510515+00:00" }
Views | 22 |
Downloads | 38 |
Data volume | 139.6 MB |
Unique views | 20 |
Unique downloads | 37 |